你好,我是高楼。

从这里开始,我们就进入全链路压测的第二部分了。我会基于一个完整的项目给你讲一讲全链路压测的核心需求。这一讲这是第二部分的开篇,非常重要,它是这个项目整体的全链路压测方案。这个方案是我基于上一个专栏《高楼的性能工程实战课》中给出的性能方案撰写的。

它包括性能指标、系统架构图、场景设计、监控设计、系统改造等部分,为后面的环境准备、具体执行奠定了基础。压测方案虽然常常被人忽视,但实际上起着非常关键的指导性作用。下面是我认为真正完整并且有意义的全链路压测方案的样子,希望能给你一些启发。

背景

接下来的课程,我要呈现的是一个完整项目从 0 到 1 落地全链路压测的过程。在项目的选择上,我将沿用我上一个专栏中的开源微服务电商项目。我们这个系统采用的技术栈,是当前技术市场中流行的主流微服务技术栈,这样的环境具有很高的借鉴价值。而且,从我的 RESAR 全链路压测方案和逻辑来看,也足以支撑当前主流的微服务技术栈。

压测目标

  1. 根据经典的电商下单流程,测试当前系统的单接口最大容量。
  2. 录制真实的线上流量,回放压测流量,充分利用当前服务器资源,找到当前系统的性能瓶颈并优化,最终达到最佳容量状态。
  3. 结合稳定性场景,做到精准的容量规划,给服务做限流降级提供数据上的参考。
  4. 结合异常场景,实践并判断当前系统中的异常情况对线上产生的影响。

压测范围

通过梳理核心压测链路,即电商下单主流程,可确定压测范围,如下所示:

准则

启动准则

  1. 确定旁路基础数据和生产一致,或按模型缩放。

  2. 确定预压测(小流量)可以生成真实的业务。

  3. 环境准备完毕,包括:
    3.1. 基础静态数据压测验证通过。
    3.2. 各组件基础参数梳理并配置正确。
    3.3. 压力机到位并部署完毕。
    3.4. 网络配置正确,连接通畅,可以满足压测需求。

4.压测计划、方案评审完毕。

5.架构组、运维组、开发组、测试组及相关保障人员到位。

结束准则

  1. 达到项目的容量水位要求。
  2. 关键性能瓶颈已解决。
  3. 确定精准的容量规划数据。
  4. 完成压测报告和性能调优报告。

暂停 / 再启动准则

  1. 暂停准则
  1. 再启动准则

业务指标/性能指标

我们可以基于大促历史数据,分析流量洪峰前后的流量模型,结合当前业务量的增长趋势乘以最大容量水位系数,预估一个目标 TPS。比如这里我们暂定下单目标 TPS 为 1000,水位系数为 1(集群负荷/集群最大容量),不考虑冗余。

系统架构图

系统技术栈

我在下面整理了整个架构中使用的技术组件。它方便我们在后续的压测工作中整理出相应的关键性能参数配置。可以看到,我们这个项目已经覆盖了当前技术市场中的主流技术组件。

  1. 微服务框架:Spring CloudSpring Cloud Alibaba
  2. 容器+MVC 框架:Spring Boot
  3. 认证和授权框架:Spring Security OAuth2
  4. ORM 框架:MyBatis
  5. 数据层代码生成:MyBatisGenerator
  6. MyBatis 物理分页插件:PageHelper
  7. 文档生产工具:Knife4j
  8. 搜索引擎:Elasticsearch
  9. 消息队列:RabbitMQ
  10. 分布式缓存:Redis
  11. NoSQL 数据库:MongoDB
  12. 应用容器引擎:Docker
  13. 数据库连接池:Druid
  14. 对象存储:OSSMinIO
  15. JWT 登录支持:JWT
  16. 日志收集、处理、转发:LogStash
  17. 日志队列和缓冲:Kafka
  18. 日志采集:Filebeat
  19. 可视化分析与展示:Kibana
  20. 简化对象封装工具:Lombok
  21. 全局事务管理框架:Seata
  22. 应用容器管理平台:Kubernetes
  23. 服务保护:Sentinel
  24. 分布式链路追踪系统:Zipkin
  25. 基础资源监控: Promethues
  26. 容器级链路监控: Weave Scope
  27. 可视化看板:Grafana

系统逻辑架构图

画系统的逻辑架构图是为了后续性能分析的时候,脑子里能有一个业务链路径。我们在做性能分析时,要做响应时间的拆分,而只有了解了逻辑架构图才可以知道从哪里拆到哪里。

系统部署架构图

画部署架构图是为了让我们快速知道线上环境有多少节点、多少机器。在执行全链路压测时,可以根据经验对系统容量有一个预估。

压测实施前提条件

硬件环境

通过对整体线上环境硬件资源的整理,我们可以根据经验预估大概能支持多大的业务量级,而不至于拍脑袋定指标。

我们可以看到,当前云主机总共使用在应用中的资源是:38 C的 CPU 资源,88 G的内存资源。NFS 网络存储服务器不用在应用中。我们这里选择的云主机类型主要为计算密集型(通常比例1:2)。

在成本上,所有云主机加在一起一年大概六万左右的费用,这其中还包括云硬盘、云网络等杂七杂八的费用。

工具准备

流量平台

为了使得压测的请求跟真实的线上业务请求接近,在压测请求的来源方式上,我们将对线上的业务流量进行录制和回放,采用流量回放的方式来进行压测。

流量回放工具选择了 GoReplay,使用 Minio 对象存储对文件管理,可以做到对流量文件和 Gor 执行器 HTTP 上传下载。

同时在压测过程中,我们考虑将 GoReplay 数据做实时采集,然后再由 Grafana 来可视化展现。

最后,我们考虑结合 Shell 脚本,使用分布式任务调度中心对命令执行做统一任务调度。

监控工具

根据 RESAR 全链路压测中的“全局-定向”的全栈监控思路,我们在选择第一层监控工具时,要采集全量的全局计数器,采集的计数器包括各个层级,这里请参考前面的架构图。

但是,请你注意,在全局监控中,我们要尽量避免使用定向的监控手段,比如说 Java 应用中的方法级监控。因为在项目开始之初,我们不能确定到底在哪个层面会出现问题,所以不适合使用定向监控思路。

那全局监控怎么来做才最合理呢?这里我们可以结合线上运维现有的监控手段。注意,在性能监控过程中,我们尽量不要自己臆想,随意搭建监控工具。

基准数据

铺底数据

流量数据

在流量录制的做请求重写,加上压测标记参数,比如 Goreplay 使用–http-set-param 参数针对 URL 中存在的 key 进行改写,对不存在的参数进行追加。

这里需要强调的是,在 RESAR 全链路压测中,基础数据要满足几个特性:

  1. 生产环境的真实数据分布:要想做到这一点,最合理的方式是脱敏生产数据。在我们这个系统中,生产流量录制后,脱敏去噪后共计 243 万条用户数据和 250 万条地址数据。
  2. 流量数据一定要使用真实数据来覆盖真实用户:在全链路压测中一定要用真实流量数据来做参数化,而用多少数据取决于压测场景的设计。涉及真实的用户账号,需要 session 状态的,这里我们将考虑系统进行识别并单独处理。
  3. 流量数据一定要满足压测的可用性:通过分析大促流量洪峰历史数据的增长趋势,做到精准预估当前压测需要的数据量级。

系统改造

压测标记

在全链路压测中生成压测流量后,线上业务中需要区分流量(正常流量 & 压测流量),我们称之为链路打标,也有的叫做流量标记,由于我们这个项目为微服务架构,几乎都是 RESTful 风格的 HTTP 接口,而 HTTP 是一个比较通用的协议,我们在压测流量的 Header 中增加一个标记项。一个 flag 的 key 。值为 7DGroup 的代表压测流量,key 不存在或者 key 值不等于 7DGroup,代表非压测流量。

压测透传

线上压测要保证压测安全且可控,不会影响真实用户的使用,不会对线上环境造成任何的数据污染。所以首先解决的是压测流量的识别与透传问题。

目前微服务架构中分布式跟踪系统作为基础设施,不会限制使用线程池等会池化复用线程的组件,并期望业务逻辑尽可能地透明。从技术能力上讲,全链路压测流量治理与分布式链路追踪系统是一样的,即流量标记。

目前市面上,几乎所有分布式链路追踪的实现,理论基础都是基于 Google Dapper 的那篇论文,其中最重要的核心概念就是 TraceId 和 SpanId。而对于分布式系统的压测流量透传主要涉及两大方面:

跨线程间的透传:

对于涉及多线程调用的服务来说,要保证压测标记在跨线程的情况下不丢失。主线程根据压测请求,将测试标记写入当前线程的 ThreadLocal 对象中,利用 InheritableThreadLocal 的特性,将父线程 ThreadLocal 中的变量传递给子线程,这样就保证了压测标记的传递。而对于采用线程池的情况,同样对线程池进行封装,在往线程池中添加线程任务时,额外保存了ThreadLocal 中的变量,执行任务时再替换 ThreadLocal 中的变量。

跨服务间的透传:

对于跨服务的调用,我们对所有涉及到的服务进行了一一改造。利用 Spring Cloud Sleuth的服务间原生传递上下文特性,在原有传输上下文的基础上,添加压测标记的属性,以保证跨服务传输中始终带着压测标记。这样也就免去了代码的硬耦合。

压测隔离

线上压测最棘手的问题是写请求的压测,因为它会向生产库中写入大量的脏数据。我们借鉴了目前主流大厂的“影子库和数据偏移”的隔离方案。

日志隔离

微服务请求调用链追踪始终都是体现在分布式服务之间,我们通过网关入口透传,改造下日志框架,使接下来的日志都拦截并记录这个压测标记,那么最后存下来的日志有 traceID 和 tag 组合,最后搜索 ES 日志的时候,就能做到区分请求(正常流量 & 压测流量)了。

考虑到日志打印一般是无序的,在一个用户的使用过程中,可能有多个不同的线程来进行处理。典型的例子是当用户访问某个页面时,应用服务可能会创建一个新的线程来处理该请求,也可能从线程池中复用已有的线程。在一个用户 session 存续期间,可能有多个线程处理过该用户的请求。当需要追踪某个用户在系统中的相关日志记录时,就会变得很麻烦。

解决办法就是引入 MDC(Mapped Diagnostic Context,映射调试上下文)。而 SLF4J 提供了 MDC ( Mapped Diagnostic Contexts )功能,它的实现也是利用了 ThreadLocal 机制。改造代码只需要将指定的值 put 到线程上下文的 Map 中,然后在对应的地方使用 get 方法获取对应的值,从而达到自定义和修改日志输出格式内容的目的。

考虑到压测流量比较大,产生的日志也非常多,压测流量的日志很容易覆盖正常流量的日志。我们选择改写 Logback 的 Appender,根据流量标记将日志写入对应影子目录中,并且配置默认的删除策略,日志只保存三天。

Mock 设计

对于第三方接口,例如下单支付,给用户发消息等,我们不能将压测流量的请求打过去,所以需要改写请求的逻辑,将 Mock 的逻辑保存在 Mock Server 上面,考虑使用 AOP 技术进行统一封装。

压测设计

场景执行策略

场景递增策略

对于性能场景,我们认为它必须满足两个条件:连续递增,所以在这次的全链路压测执行过程中,我们会把这两点应用到下面的业务场景中。

这里面的详细介绍可以参考性能工程专栏的《05 | 性能方案:你的方案是否还停留在形式上?》

业务场景

在 RESAR 全链路压测中,性能场景只需要四类,执行顺序从上到下依次为:

请你注意,除了这四类性能场景外,再没有其他类型的场景了。在每一个场景分类中,我们都可以设计多个具体的场景来覆盖完整的业务。具体可以参考《高楼的性能工程实战课》,这里我就不逐一解释了。

监控设计

全局监控

有了前面的监控工具部分,监控设计就反而简单了。对于我们这个系统,全局监控如下所示:

从上图来看,我们使用 Prometheus/Grafana/Spring Boot Admin/Zipkin/Weave Scope/ELFK/Sentinel 实现具有全局视角的第一层监控。对工具中没有覆盖的第一层计数器,我们只能在执行场景时再执行命令来补充了。

注意,为了应对线上的风险,我们还需要提供压测熔断机制来应对突发事件,降低压测对线上服务的影响。这里我们主要考虑两个方面:

定向监控

那后面的定向监控怎么办呢?在这里我也大体列一下常用的工具。这些工具是在有性能问题的时候才会去使用的。

在性能分析的过程中,还会使用很多其他工具查找证据链,这里只能给出最常用的工具,无法全部罗列出来。大家要根据系统使用到的技术组件灵活使用工具,在课程后续的操作中,我们也有可能使用一些没有列出的工具。

项目组织架构

在全链路压测方案中,一定要画出项目的组织架构图,并且请你一定要在这部分写明各组织人员的工作范围和职责,避免出现扯皮的情况。我大体画了一下常见的组织架构图:

这是我按照工作内容而不是职场中的工作职位来设计的组织架构,我觉得这是一个合理的组织架构。在这张图中,性能工程师所负责的事情是现在大部分性能从业人员都在做的。此外,我们还需要性能分析工程师、架构师、开发工程师、运维工程师的支持和保障。

业务方作为性能的业务需求来源也必不可少。如果业务方提不出来什么合理的性能需求,那这个全链路压测项目很有可能一片混乱。

至于老板这个角色,在性能项目中,我们经常看到的老板都不懂什么叫性能,只会叫着要支持 XXX 并发用户数,支持 XXX 在线用户数。其实,这样的老板沟通起来也很简单,就是拿结果给他看就好了。不过,在全链路压测项目的执行过程中,当线上资源不足时,请你一定要让老板知道,同时降低老板的预期,要不然在后续的沟通中会很费劲。

成果输出

过程性输出

  1. 压测方案
  2. 流量数据
  3. 场景执行结果
  4. 监控结果
  5. 问题记录

在全链路压测项目中,过程性输出有这些内容就够了。我们经常看到很多项目在执行完之后,除了有一份压测报告之外,什么过程性输出都没有。实在不理解这样的企业是怎么积累性能经验的。

结果输出

通常情况下,我们做的性能项目都会输出两个最终交付的文档:一个是性能场景执行结果记录的报告(就是现在我们常写的压测报告),另一个是性能调优报告。

压测报告想必大家见得多了,这里只强调几点:

  1. 一定要有结论,而不是给出一堆类似“资源使用率是多少”“TPS 是多少”“响应时间是多少”这种描述类的总结语。我们要给出“当前系统可支持 XXX 并发用户数”这样的结论。
  2. 一定不要用“可能”这种模棱两可的词。
  3. 压测报告中要有对运维工作的建议,也就是要给出关键性能参数的配置建议,比如线程池、队列、超时、服务限流降级等。
  4. 性能结果报告中要有对后续压测工作的建议。

调优报告是整个性能项目的精华,调优报告中一定要记录下每一个性能问题的问题现象、分析过程、解决方案和解决效果。可以说,调优报告完全是一个性能团队技术能力的体现。

项目风险分析

对于全链路压测项目的风险,我把比较常见的风险列在这里:

  1. 业务侧的性能需求不明确。
  2. 线上环境问题。
  3. 脏数据问题。
  4. 梳理链路不准确。
  5. 多个团队间协调沟通困难,无法协同。
  6. 瓶颈分析不到位,影响进度。

在我们这个课程所用的项目中,比较大的风险就是:

  1. 硬件资源有限。
  2. 项目时间不可控,因为出了问题,并没有人支持,只能自己搞。

不过请你放心,我们会努力克服困难,把这个全链路项目的执行过程都记录下来。

到这里,整个全链路压测方案就结束了。

总结

在这节课里,我把一个全链路压测方案该有的内容以及要写到什么程度,都给你梳理了一遍。希望能给你一些借鉴。

压测方案是一个性能项目的重要输出。对于一个完整的项目来说,压测方案就显得极为重要。因为它指导了整个项目的实施过程。在压测方案中,我强调了几个重点:核心链路、性能指标、系统架构图、系统改造、场景设计、监控设计等,它们都会对整个全链路压测项目的质量起到关键作用。

看完我的方案,希望你可以在后续的项目中,自己尝试去写一个完整的全链路压测方案。如果在撰写的过程中遇到什么问题,也可以在留言区向我提问。

课后题

这节课的内容到这里就要结束了,最后,请你思考两个问题:

  1. 如何精确预测线上压测基础数据量?
  2. 为什么要强调系统架构图的重要性?

欢迎你在留言区与我交流讨论。当然了,你也可以把这节课分享给你身边的朋友,他们的一些想法或许会让你有更大的收获。我们下节课见!

评论