在前面的两篇文章中,我给你讲了决策树算法。决策树算法是经常使用的数据挖掘算法,这是因为决策树就像一个人脑中的决策模型一样,呈现出来非常直观。基于决策树还诞生了很多数据挖掘算法,比如随机森林(Random forest)。
今天我来带你用决策树进行项目的实战。
决策树分类的应用场景非常广泛,在各行各业都有应用,比如在金融行业可以用决策树做贷款风险评估,医疗行业可以用决策树生成辅助诊断,电商行业可以用决策树对销售额进行预测等。
在了解决策树的原理后,今天我们用sklearn工具解决一个实际的问题:泰坦尼克号乘客的生存预测。
首先,我们需要掌握sklearn中自带的决策树分类器DecisionTreeClassifier,方法如下:
clf = DecisionTreeClassifier(criterion='entropy')
到目前为止,sklearn中只实现了ID3与CART决策树,所以我们暂时只能使用这两种决策树,在构造DecisionTreeClassifier类时,其中有一个参数是criterion,意为标准。它决定了构造的分类树是采用ID3分类树,还是CART分类树,对应的取值分别是entropy或者gini:
entropy: 基于信息熵,也就是ID3算法,实际结果与C4.5相差不大;
gini:默认参数,基于基尼系数。CART算法是基于基尼系数做属性划分的,所以criterion=gini时,实际上执行的是CART算法。
我们通过设置criterion='entropy’可以创建一个ID3决策树分类器,然后打印下clf,看下决策树在sklearn中是个什么东西?
DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=None,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort=False, random_state=None,
splitter='best')
这里我们看到了很多参数,除了设置criterion采用不同的决策树算法外,一般建议使用默认的参数,默认参数不会限制决策树的最大深度,不限制叶子节点数,认为所有分类的权重都相等等。当然你也可以调整这些参数,来创建不同的决策树模型。
我整理了这些参数代表的含义:
在构造决策树分类器后,我们可以使用fit方法让分类器进行拟合,使用predict方法对新数据进行预测,得到预测的分类结果,也可以使用score方法得到分类器的准确率。
下面这个表格是fit方法、predict方法和score方法的作用。
问题描述
泰坦尼克海难是著名的十大灾难之一,究竟多少人遇难,各方统计的结果不一。现在我们可以得到部分的数据,具体数据你可以从GitHub上下载:https://github.com/cystanford/Titanic_Data
(完整的项目代码见:https://github.com/cystanford/Titanic_Data/blob/master/titanic_analysis.py 你可以跟着学习后自己练习)
其中数据集格式为csv,一共有两个文件:
train.csv是训练数据集,包含特征信息和存活与否的标签;
test.csv: 测试数据集,只包含特征信息。
现在我们需要用决策树分类对训练集进行训练,针对测试集中的乘客进行生存预测,并告知分类器的准确率。
在训练集中,包括了以下字段,它们具体为:
生存预测的关键流程
我们要对训练集中乘客的生存进行预测,这个过程可以划分为两个重要的阶段:
准备阶段:我们首先需要对训练集、测试集的数据进行探索,分析数据质量,并对数据进行清洗,然后通过特征选择对数据进行降维,方便后续分类运算;
分类阶段:首先通过训练集的特征矩阵、分类结果得到决策树分类器,然后将分类器应用于测试集。然后我们对决策树分类器的准确性进行分析,并对决策树模型进行可视化。
下面,我分别对这些模块进行介绍。
模块1:数据探索
数据探索这部分虽然对分类器没有实质作用,但是不可忽略。我们只有足够了解这些数据的特性,才能帮助我们做数据清洗、特征选择。
那么如何进行数据探索呢?这里有一些函数你需要了解:
使用info()了解数据表的基本情况:行数、列数、每列的数据类型、数据完整度;
使用describe()了解数据表的统计情况:总数、平均值、标准差、最小值、最大值等;
使用describe(include=[‘O’])查看字符串类型(非数字)的整体情况;
使用head查看前几行数据(默认是前5行);
使用tail查看后几行数据(默认是最后5行)。
我们可以使用Pandas便捷地处理这些问题:
import pandas as pd
# 数据加载
train_data = pd.read_csv('./Titanic_Data/train.csv')
test_data = pd.read_csv('./Titanic_Data/test.csv')
# 数据探索
print(train_data.info())
print('-'*30)
print(train_data.describe())
print('-'*30)
print(train_data.describe(include=['O']))
print('-'*30)
print(train_data.head())
print('-'*30)
print(train_data.tail())
运行结果:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId 891 non-null int64
Survived 891 non-null int64
Pclass 891 non-null int64
Name 891 non-null object
Sex 891 non-null object
Age 714 non-null float64
SibSp 891 non-null int64
Parch 891 non-null int64
Ticket 891 non-null object
Fare 891 non-null float64
Cabin 204 non-null object
Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB
None
------------------------------
PassengerId Survived ... Parch Fare
count 891.000000 891.000000 ... 891.000000 891.000000
mean 446.000000 0.383838 ... 0.381594 32.204208
std 257.353842 0.486592 ... 0.806057 49.693429
min 1.000000 0.000000 ... 0.000000 0.000000
25% 223.500000 0.000000 ... 0.000000 7.910400
50% 446.000000 0.000000 ... 0.000000 14.454200
75% 668.500000 1.000000 ... 0.000000 31.000000
max 891.000000 1.000000 ... 6.000000 512.329200
[8 rows x 7 columns]
------------------------------
Name Sex ... Cabin Embarked
count 891 891 ... 204 889
unique 891 2 ... 147 3
top Peter, Mrs. Catherine (Catherine Rizk) male ... B96 B98 S
freq 1 577 ... 4 644
[4 rows x 5 columns]
------------------------------
PassengerId Survived Pclass ... Fare Cabin Embarked
0 1 0 3 ... 7.2500 NaN S
1 2 1 1 ... 71.2833 C85 C
2 3 1 3 ... 7.9250 NaN S
3 4 1 1 ... 53.1000 C123 S
4 5 0 3 ... 8.0500 NaN S
[5 rows x 12 columns]
------------------------------
PassengerId Survived Pclass ... Fare Cabin Embarked
886 887 0 2 ... 13.00 NaN S
887 888 1 1 ... 30.00 B42 S
888 889 0 3 ... 23.45 NaN S
889 890 1 1 ... 30.00 C148 C
890 891 0 3 ... 7.75 NaN Q
[5 rows x 12 columns]
模块2:数据清洗
通过数据探索,我们发现Age、Fare和Cabin这三个字段的数据有所缺失。其中Age为年龄字段,是数值型,我们可以通过平均值进行补齐;Fare为船票价格,是数值型,我们也可以通过其他人购买船票的平均值进行补齐。
具体实现的代码如下:
# 使用平均年龄来填充年龄中的nan值
train_data['Age'].fillna(train_data['Age'].mean(), inplace=True)
test_data['Age'].fillna(test_data['Age'].mean(),inplace=True)
# 使用票价的均值填充票价中的nan值
train_data['Fare'].fillna(train_data['Fare'].mean(), inplace=True)
test_data['Fare'].fillna(test_data['Fare'].mean(),inplace=True)
Cabin为船舱,有大量的缺失值。在训练集和测试集中的缺失率分别为77%和78%,无法补齐;Embarked为登陆港口,有少量的缺失值,我们可以把缺失值补齐。
首先观察下Embarked字段的取值,方法如下:
print(train_data['Embarked'].value_counts())
结果如下:
S 644
C 168
Q 77
我们发现一共就3个登陆港口,其中S港口人数最多,占到了72%,因此我们将其余缺失的Embarked数值均设置为S:
# 使用登录最多的港口来填充登录港口的nan值
train_data['Embarked'].fillna('S', inplace=True)
test_data['Embarked'].fillna('S',inplace=True)
模块3:特征选择
特征选择是分类器的关键。特征选择不同,得到的分类器也不同。那么我们该选择哪些特征做生存的预测呢?
通过数据探索我们发现,PassengerId为乘客编号,对分类没有作用,可以放弃;Name为乘客姓名,对分类没有作用,可以放弃;Cabin字段缺失值太多,可以放弃;Ticket字段为船票号码,杂乱无章且无规律,可以放弃。其余的字段包括:Pclass、Sex、Age、SibSp、Parch和Fare,这些属性分别表示了乘客的船票等级、性别、年龄、亲戚数量以及船票价格,可能会和乘客的生存预测分类有关系。具体是什么关系,我们可以交给分类器来处理。
因此我们先将Pclass、Sex、Age等这些其余的字段作特征,放到特征向量features里。
# 特征选择
features = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
train_features = train_data[features]
train_labels = train_data['Survived']
test_features = test_data[features]
特征值里有一些是字符串,这样不方便后续的运算,需要转成数值类型,比如Sex字段,有male和female两种取值。我们可以把它变成Sex=male和Sex=female两个字段,数值用0或1来表示。
同理Embarked有S、C、Q三种可能,我们也可以改成Embarked=S、Embarked=C和Embarked=Q三个字段,数值用0或1来表示。
那该如何操作呢,我们可以使用sklearn特征选择中的DictVectorizer类,用它将可以处理符号化的对象,将符号转成数字0/1进行表示。具体方法如下:
from sklearn.feature_extraction import DictVectorizer
dvec=DictVectorizer(sparse=False)
train_features=dvec.fit_transform(train_features.to_dict(orient='record'))
你会看到代码中使用了fit_transform这个函数,它可以将特征向量转化为特征值矩阵。然后我们看下dvec在转化后的特征属性是怎样的,即查看dvec的feature_names_属性值,方法如下:
print(dvec.feature_names_)
运行结果:
['Age', 'Embarked=C', 'Embarked=Q', 'Embarked=S', 'Fare', 'Parch', 'Pclass', 'Sex=female', 'Sex=male', 'SibSp']
你可以看到原本是一列的Embarked,变成了“Embarked=C”“Embarked=Q”“Embarked=S”三列。Sex列变成了“Sex=female”“Sex=male”两列。
这样train_features特征矩阵就包括10个特征值(列),以及891个样本(行),即891行,10列的特征矩阵。
模块4:决策树模型
刚才我们已经讲了如何使用sklearn中的决策树模型。现在我们使用ID3算法,即在创建DecisionTreeClassifier时,设置criterion=‘entropy’,然后使用fit进行训练,将特征值矩阵和分类标识结果作为参数传入,得到决策树分类器。
from sklearn.tree import DecisionTreeClassifier
# 构造ID3决策树
clf = DecisionTreeClassifier(criterion='entropy')
# 决策树训练
clf.fit(train_features, train_labels)
模块5:模型预测&评估
在预测中,我们首先需要得到测试集的特征值矩阵,然后使用训练好的决策树clf进行预测,得到预测结果pred_labels:
test_features=dvec.transform(test_features.to_dict(orient='record'))
# 决策树预测
pred_labels = clf.predict(test_features)
在模型评估中,决策树提供了score函数可以直接得到准确率,但是我们并不知道真实的预测结果,所以无法用预测值和真实的预测结果做比较。我们只能使用训练集中的数据进行模型评估,可以使用决策树自带的score函数计算下得到的结果:
# 得到决策树准确率
acc_decision_tree = round(clf.score(train_features, train_labels), 6)
print(u'score准确率为 %.4lf' % acc_decision_tree)
运行结果:
score准确率为 0.9820
你会发现你刚用训练集做训练,再用训练集自身做准确率评估自然会很高。但这样得出的准确率并不能代表决策树分类器的准确率。
这是为什么呢?
因为我们没有测试集的实际结果,因此无法用测试集的预测结果与实际结果做对比。如果我们使用score函数对训练集的准确率进行统计,正确率会接近于100%(如上结果为98.2%),无法对分类器的在实际环境下做准确率的评估。
那么有什么办法,来统计决策树分类器的准确率呢?
这里可以使用K折交叉验证的方式,交叉验证是一种常用的验证分类准确率的方法,原理是拿出大部分样本进行训练,少量的用于分类器的验证。K折交叉验证,就是做K次交叉验证,每次选取K分之一的数据作为验证,其余作为训练。轮流K次,取平均值。
K折交叉验证的原理是这样的:
将数据集平均分割成K个等份;
使用1份数据作为测试数据,其余作为训练数据;
计算测试准确率;
使用不同的测试集,重复2、3步骤。
在sklearn的model_selection模型选择中提供了cross_val_score函数。cross_val_score函数中的参数cv代表对原始数据划分成多少份,也就是我们的K值,一般建议K值取10,因此我们可以设置CV=10,我们可以对比下score和cross_val_score两种函数的正确率的评估结果:
import numpy as np
from sklearn.model_selection import cross_val_score
# 使用K折交叉验证 统计决策树准确率
print(u'cross_val_score准确率为 %.4lf' % np.mean(cross_val_score(clf, train_features, train_labels, cv=10)))
运行结果:
cross_val_score准确率为 0.7835
你可以看到,score函数的准确率为0.9820,cross_val_score准确率为 0.7835。
这里很明显,对于不知道测试集实际结果的,要使用K折交叉验证才能知道模型的准确率。
模块6:决策树可视化
sklearn的决策树模型对我们来说,还是比较抽象的。我们可以使用Graphviz可视化工具帮我们把决策树呈现出来。
安装Graphviz库需要下面的几步:
安装graphviz工具,这里是它的下载地址;http://www.graphviz.org/download/
将Graphviz添加到环境变量PATH中;
需要Graphviz库,如果没有可以使用pip install graphviz进行安装。
这样你就可以在程序里面使用Graphviz对决策树模型进行呈现,最后得到一个决策树可视化的PDF文件,可视化结果文件Source.gv.pdf你可以在GitHub上下载:https://github.com/cystanford/Titanic_Data
今天我用泰坦尼克乘客生存预测案例把决策树模型的流程跑了一遍。在实战中,你需要注意一下几点:
特征选择是分类模型好坏的关键。选择什么样的特征,以及对应的特征值矩阵,决定了分类模型的好坏。通常情况下,特征值不都是数值类型,可以使用DictVectorizer类进行转化;
模型准确率需要考虑是否有测试集的实际结果可以做对比,当测试集没有真实结果可以对比时,需要使用K折交叉验证cross_val_score;
Graphviz可视化工具可以很方便地将决策模型呈现出来,帮助你更好理解决策树的构建。
我上面讲了泰坦尼克乘客生存预测的六个关键模块,请你用sklearn中的决策树模型独立完成这个项目,对测试集中的乘客是否生存进行预测,并给出模型准确率评估。数据从GitHub上下载即可。
最后给你留一个思考题吧,我在构造特征向量时使用了DictVectorizer类,使用fit_transform函数将特征向量转化为特征值矩阵。DictVectorizer类同时也提供transform函数,那么这两个函数有什么区别?
欢迎你在评论区留言与我分享你的答案,也欢迎点击“请朋友读”把这篇文章分享给你的朋友或者同事,一起交流一下。