你好,我是朱涛。今天是初四了,在过年的节日氛围里你还能来坚持学习,这里也跟优秀的你说声感谢。
在上节课里呢,我给你留了一个作业:用Kotlin来完成 LeetCode的592号题《分数加减运算》。那么今天这节课,我们就一起来看看它的解题思路吧。
这其实也是一道典型的模拟题,分式的加减法这样的题目,我们小学就知道怎么做了,核心解题思路主要是这几步:
经过这四个步骤,我们就可以计算出“1/2-1/6=1/3”。不过呢,这道题里,我们除了要计算分数的加减法以外,还要先完成分数的解析。程序的输入是字符串“1/2-1/6”,但它是不会帮我们自动解析的,所以,解析这一步也需要我们来做。
所以,自然而然地,我们就会定义一个分数的数据类Expression。
data class Expression(val numerator: Int, val denominator: Int) {
override fun toString(): String {
return "$numerator/$denominator"
}
}
在这个数据类Expression当中,一共有两个属性,numerator代表了分子,denominator代表了分母,它们的类型都是Int。另外,分数都是带有符号的,这里我们按照约定俗成来处理:分子可能是正数或负数,分母则一定是正整数。比如“1/2”,我们就用Expression(1,2)来表示;而“-1/2”,我们就用Expression(-1,2)来表示,而不会使用Expression(1,-2)表示。
另外在正式开始做题之前,还有一些额外的条件是需要我们弄清楚的:
好,问题的细节我们弄清楚了,大致思路也有了,接下来,我们就用三种解法来搞定这道题。
命令式的代码是最符合编程直觉的,我们的思路大致如下:
+-
”,然后再用split("+")
将式子分割成一个个独立分数。这种技巧我们在上节课就已经用过了。整个过程如下图:
所以,我们就可以把代码分为以下几个步骤:
fun fractionAddition(expression: String): String {
// ①,分割式子
// ②,解析分数成Expression
// ③,计算所有分母的最小公倍数
// ④,将所有的分数都通分
// ⑤,将所有分子加起来进行计算,得到结果
// ⑥,将结果化为“最简分数”
// ⑦,最后,返回toString()的结果
}
把编码步骤梳理清楚了以后,其实我们每一个步骤都不难实现了:
fun fractionAddition(expression: String): String {
// ①,分割式子
val list = expression.replace("-", "+-")
val fractionList = list.split("+")
val expressionList = mutableListOf<Expression>()
// ②,解析分数成Expression
for (item in fractionList) {
if (item.trim() != "") {
expressionList.add(parseExpression(item))
}
}
// ③,计算所有分母的最小公倍数
var lcm = 1
for (exp in expressionList) {
lcm = lcm(lcm, exp.denominator)
}
// ④,将所有的分数都通分
val commonDenominatorFractions = mutableListOf<Expression>()
for (exp in expressionList) {
commonDenominatorFractions.add(toCommonDenominatorExp(exp, lcm))
}
// ⑤,将所有分子加起来进行计算,得到结果
var numerator = 0
for (fraction in commonDenominatorFractions) {
numerator += fraction.numerator
}
// ⑥,将结果化为“最简分数”
val result = Expression(numerator, lcm)
val reducedFraction = result.reducedFraction()
// ⑦,最后,返回toString()的结果
return reducedFraction.toString()
}
在上面的代码当中,还涉及到几个辅助函数,它们的实现也很简单。
// 解析分数,“1/2” -> Expression(1,2)
private fun parseExpression(expression: String): Expression {
val list = expression.trim().split("/")
if (list.size != 2) {
throw IllegalArgumentException()
}
return Expression(list[0].toInt(), list[1].toInt())
}
// 通分
private fun toCommonDenominatorExp(expression: Expression, lcm: Int): Expression {
return Expression(
numerator = expression.numerator * lcm / expression.denominator,
denominator = lcm
)
}
// 最简化分数
private fun Expression.reducedFraction(): Expression {
val gcd = gcd(Math.abs(numerator), denominator)
return Expression(numerator / gcd, denominator / gcd)
}
// 求两个数的最小公倍数,Least Common Multiple
private fun lcm(a: Int, b: Int) = a * b / gcd(a, b)
// 求两个数的最大公约数,Greatest Common Divisor
private fun gcd(a: Int, b: Int): Int {
var (big, small) = if (a > b) a to b else b to a
while (small != 0) {
val temp = small
small = big % small
big = temp
}
return big
}
这几个辅助函数,需要注意的是 reducedFraction(),它的作用是计算最简分数,计算过程,其实就是计算出分子、分母的最大公约数,然后同时除以最大公约数。而最大公约数 gcd() 这个方法,本质上就是我们小学学过的辗转相除法。而最小公倍数 lcm() 这个方法,则是通过两数相乘,然后除以最大公约数求出来的。
至此,我们的第一种解法就完成了。
其实,利用同样的思想,我们还可以写出函数式的解法。如果你足够细心的话,你会发现解法一的代码可读性并不是很好,而如果用函数式思想重构上面的代码的话,可读性将会得到很大改善。
fun fractionAddition(expression: String): String {
var lcm: Int
return expression
.replace("-", "+-")
.split("+")
.filter { it.trim() != "" }
.map(::parseExpression)
.also { lcm = getCommonDenominator(it) }
.map { toCommonDenominatorExp(it, lcm) }
.reduce(::calculateExp)
.reducedFraction()
.toString()
}
这段代码,我们从上读到下,就跟读英语文本一样:
+-
”替代“-”;那么,要写出上面这样的代码,我们仍然是需要一些辅助函数的,它们的逻辑跟解法一是一样的,只是换了种写法。
private fun parseExpression(expression: String) =
expression.trim()
.split("/")
.takeIf { it.size == 2 }
?.let { Expression(it[0].toInt(), it[1].toInt()) }
?: throw IllegalArgumentException()
private fun getCommonDenominator(list: List<Expression>) =
list.map { it.denominator }.reduce(::lcm)
private fun toCommonDenominatorExp(expression: Expression, lcm: Int): Expression =
expression.let {
Expression(numerator = it.numerator * lcm / it.denominator, denominator = lcm)
}
private fun calculateExp(acc: Expression, expression: Expression): Expression =
Expression(acc.numerator + expression.numerator, acc.denominator)
private fun Expression.reducedFraction(): Expression =
gcd(Math.abs(numerator), denominator)
.let { Expression(numerator / it, denominator / it) }
// Least Common Multiple
private fun lcm(a: Int, b: Int) = a * b / gcd(a, b)
// Greatest Common Divisor
private fun gcd(a: Int, b: Int): Int {
var (big, small) = if (a > b) a to b else b to a
while (small != 0) {
val temp = small
small = big % small
big = temp
}
return big
}
可以发现,对于复杂一些的方法来说,如果以函数式的思路来重构的话,可读性会有比较明显的提升。而对于原本就很简单的方法,重构之后,可读性反而会下降。所以,我们在写Kotlin的时候,不能一味追求所谓的范式正确,哪种范式更合适,我们就应该用哪个。
好,前面的这两种解法的思路都是一样的,不过这两种解法其实还是会有一个问题,那就是当分数很多,并且分母很大的情况下,我们一次性计算所有分母的最小公倍数时,是可能导致溢出的(当然,我们前面已经明确讲过不需要考虑溢出)。
所以,前面两种解法的思路还可以再进一步优化,同时也可以避免溢出的问题。它整体的思路没有什么大的变化,只是在计算的时候不会采取一次性将所有分数通分的策略,而是选择一次计算两个相邻的分数,得到结果以后再计算下一个。
这里我制作了一个动图,方便你理解它的整体过程:
可以看到,这种思路的唯一区别就在于,它会先计算“1/3-1/2”的结果,将结果化为最简分数以后,再拿结果进行下一步计算“-1/6+1/4”,最终才会得到结果“1/12”。
这样,我们在解法二的基础上,稍作改动就能实现:
fun fractionAddition(expression: String): String =
expression
.replace("-", "+-")
.split("+")
.filter { it.trim() != "" }
.map(::parseExpression)
.reduce(::calculateExp)
.reducedFraction()
.toString()
其实,我们也就是通过reduce(::calculateExp)这行代码,来计算相邻的分数的。
下面,我们具体来看看calculateExp()这个方法。
private fun calculateExp(acc: Expression, expression: Expression): Expression {
val lcm = lcm(acc.denominator, expression.denominator)
val exp1 = toCommonDenominatorExp(acc, lcm)
val exp2 = toCommonDenominatorExp(expression, lcm)
return Expression(exp1.numerator + exp2.numerator, lcm).reducedFraction()
}
calculateExp()方法的实现也很简单,它的作用是计算两个分数的结果。总体流程就是:
至此,解法三的代码就完成了,除了calculateExp()这个方法的实现之外,其他代码跟解法二是一样的。我们来看看它整体的代码吧。
fun fractionAddition(expression: String): String =
expression
.replace("-", "+-")
.split("+")
.filter { it.trim() != "" }
.map(::parseExpression)
.reduce(::calculateExp)
.reducedFraction()
.toString()
private fun parseExpression(expression: String) =
expression.trim()
.split("/")
.takeIf { it.size == 2 }
?.let { Expression(it[0].toInt(), it[1].toInt()) }
?: throw IllegalArgumentException()
private fun toCommonDenominatorExp(expression: Expression, lcm: Int): Expression =
expression.let {
Expression(numerator = it.numerator * lcm / it.denominator, denominator = lcm)
}
private fun calculateExp(acc: Expression, expression: Expression): Expression {
val lcm = lcm(acc.denominator, expression.denominator)
val exp1 = toCommonDenominatorExp(acc, lcm)
val exp2 = toCommonDenominatorExp(expression, lcm)
return Expression(exp1.numerator + exp2.numerator, lcm).reducedFraction()
}
private fun Expression.reducedFraction(): Expression =
gcd(Math.abs(numerator), denominator)
.let { Expression(numerator / it, denominator / it) }
// Least Common Multiple
private fun lcm(a: Int, b: Int) = a * b / gcd(a, b)
// Greatest Common Divisor
private fun gcd(a: Int, b: Int): Int {
var (big, small) = if (a > b) a to b else b to a
while (small != 0) {
val temp = small
small = big % small
big = temp
}
return big
}
这节课,我们一共用了三种解法来实现 LeetCode的592号题《分数加减运算》这道题。解法一和二,它们的思路是一致的,只是前者是命令式,后者是函数式。而解法三,则是在解法二的基础上做的优化。我们可以来对比一下这三种解法。
不知不觉,春节假期就快要过去了。在这一周里,我们体验了一把用Kotlin刷题的感觉。总体来说,用Kotlin来刷算法题还是比较愉快的,对比起Java,它能提供丰富API的同时,还能提供多样的编程范式。对于不同的问题,我们可以灵活选择编程范式来解决。
在这一周里,我故意在使用多种范式来刷题,目的就是让你可以体会到Kotlin在面对不同问题的时候,它在不同编程范式上的不同表现。
那么,在最后,我希望你不要把这节课当作Kotlin刷题的终点,而是要把这节课当作一个起点。因为,用Kotlin刷算法题,真的是个一举多得的好办法!我们何乐而不为呢?
好,还是给你留一个小作业吧,请你写出“解法三”对应的命令式代码吧。
提示:在解法一的基础上做一些修改就能轻松实现了。
评论