你好,我是王庆友。从今天开始,我们就进入了技术架构模块,所以,这一讲,我想先跟你聊聊技术架构要解决什么问题。

对于开发人员来说,我们每天都在用技术。但你要知道,我们写的代码,其实只是系统的一小部分,我们了解的技术,也只是系统用到的一小部分。要深入掌握技术架构,我们就需要了解整体的系统。

面对一个复杂的系统,我想你可能经常会有以下困扰:

  1. 不清楚系统整体的处理过程,当系统出问题时,不知道如何有针对性地去排查问题。
  2. 系统设计时,经常忽视非业务性功能的需求,也不清楚如何实现这些目标,经常是付出惨痛的教训后,才去亡羊补牢。

不知你是否还记得,在第一讲“架构的本质”中,我已经说过,技术架构是从物理层面定义系统,并保障系统的稳定运行。那么今天,我会先分析下系统在物理上由哪些部分组成,让你可以从全局的角度看一个系统;然后再和你一起讨论,技术架构会面临哪些软硬件的挑战,以及它都有哪些目标,让你能够深入地了解技术架构。

系统的物理模型

对于大部分开发人员来说,我们主要的工作是写业务相关的代码,保证业务逻辑正确、业务数据准确,然后,这些业务代码经过打包部署后,变成实际可运行的应用。但我们写的代码只是系统的冰山一角,为了保证应用能正常运行,我们需要从端到端系统的角度进行分析。

我们先看下一个系统的具体组成,这里我为你提供了一个简化的系统物理模型,你可以了解一个系统大致包含哪些部分。

从用户请求的处理过程来看,系统主要包括五大部分。

首先是接入系统,它负责接收用户的请求,然后把用户的请求分发到某个Web服务器进行处理,接入系统主要包括DNS域名解析、负载均衡、Web服务器这些组件。

接下来,Web服务器会把请求交给应用系统进行处理。一般来说,我们是基于某个开发框架来开发应用的,比如Java应用一般是基于Spring MVC框架。

这个时候,开发框架首先会介入请求的处理,比如对HTTP协议进行解析,然后根据请求的URL和业务参数,转给我们写的业务方法。接下来,我们的应用代码,会调用开发语言提供的库和各种第三方的库,比如JDK和Log4j,一起完成业务逻辑处理。在这里,我们会把开发框架、应用代码,还有这些库打包在一起,组成一个应用系统,作为独立的进程在Web服务器中进行部署和运行。

到这里,整个系统要做的事情就完了吗?

还没有呢,在我们的应用系统底下,还有基础平台,它由好几个部分组成:首先是各个语言的运行时,比如说JVM;然后是容器或虚拟机;下面还有操作系统;最底下就是硬件和网络。

接入系统、应用系统、基础平台就构成一个最简单的系统。

在大多数情况下,应用系统还要借助大量外部的中间件来实现功能和落地数据,比如数据库、缓存、消息队列,以及RPC通讯框架等等。这里,我统称它们为核心组件,它们也是系统不可缺少的一部分。

除此之外,还有大量周边的支撑系统在支持应用的正常运行,包括日志系统、配置系统,还有大量的运维系统,它们提供监控、安全、资源调度等功能,它们和核心组件的区别是,这些系统一般不参与实际的用户请求处理,但它们在背后默默保障系统的正常运行。

到这里,你可以发现,一个端到端的系统是非常复杂的,它包含了大量的软硬件。为了保障我们的应用代码能够正常运行,我们就需要保证这里的每个组件不出问题,否则一旦组件出问题,很可能就导致系统整体的不可用。

技术架构的挑战

应用代码怎么组织(比如模块划分和服务分层),那主要是业务架构的事,这部分在前面我们已经讨论过很多了;而技术架构的职责,首先是负责系统所有组件的技术选型,然后确保这些组件可以正常运行。

我们知道,系统是由硬件和软件组成的。接下来,我们就分别从软硬件的角度来看下,技术架构都会面临什么挑战,我们需要如何应对。

硬件的问题

硬件是一个系统最基础的部分,负责真正干活的,但它有两方面的问题。

首先是硬件的处理能力有限。 对于服务器来说,它的CPU频率、内存容量、磁盘速度等等都是有限的。虽然说按照摩尔定律,随着制造工艺的发展,大概每隔18个月,硬件的性能可以提升一倍,但还是赶不上快速增长的系统处理能力的要求,特别是目前许多互联网平台,面向的都是海量的C端用户,对系统处理能力的要求可以说是没有上限的。

从技术架构的角度,提升硬件的处理能力一般有两种方式。

也就是垂直扩展,简单地说就是通过升级硬件来提升处理能力。CPU不够快,升级内核数量;内存不够多,升级容量;网络带宽不够,升级带宽。所以说,Scale Up实际上是提升硬件的质量。

也就是水平扩展,通过增加机器数量来提升处理能力。一台机器不够,就增加到2台、4台,以及更多,通过大量廉价设备的叠加,增强系统整体的处理能力。所以说,Scale Out是提升硬件的数量。

垂直扩展是最简单的方式,对系统来说,它看到的是一个性能更强的组件,技术架构上不需要任何改造。如果碰到性能有问题,垂直扩展是我们的首选,但它有物理上的瓶颈或成本的问题。受硬件的物理限制,机器的性能是有天花板的;或者有时候,硬件超出了主流的配置,它的成本会指数级增长,导致我们无法承受。

水平扩展通过硬件数量弥补性能问题,理论上可以应对所有服务器处理能力不足的情况,并实现系统处理能力和硬件成本保持一个线性增长的关系。

但水平扩展对于系统来说,它看到的是多个组件,比如说多台Web服务器。如何有效地管理大量的机器,一方面,使得性能上可以实现类似1+1=2的效果;另一方面,要让系统各个部分能够有效地衔接起来,稳定地运行,这不是一件容易的事情。我们需要通过很复杂的技术架构设计来保障,比如说,通过额外的负载均衡,来支持多台Web服务器并行工作。

硬件的第二个问题是,硬件不是100%的可靠,它本身也会出问题

比如说,服务器断电了,网络电缆被挖断了,甚至是各种自然灾害导致机房整体不可用。尤其是一个大型系统,服务器规模很大,网络很复杂,一旦某个节点出问题,整个系统都可能受影响,所以,机器数量变多,也放大了系统出故障的概率,导致系统整体的可用性变差。我们在做技术架构设计时,就要充分考虑各种硬件故障的可能性,做好应对方案。比如说针对自然灾害,系统做异地多机房部署。

软件的问题

接下来我们说下软件的问题,这里的软件,主要说的是各种中间件和系统级软件,它们配合我们的应用代码一起工作。

软件是硬件的延伸,它主要是解决硬件的各种问题,软件通过进一步封装,给系统带来了两大好处。

但软件在填硬件的各种坑的同时,也给系统挖了新的坑。举个例子,Redis集群的多节点,它解决了单节点处理能力问题,但同时也带来了新的问题,比如节点内部的网络有问题(即网络分区现象),集群的可用性就有问题;Redis数据的多副本,它解决了单台服务器故障带来的可用性问题,但同时也带来了数据的一致性问题。

我们知道,分布式系统有个典型的CAP理论,C代表系统内部的数据一致性,A代码系统的可用性,P代表节点之间的网络是否允许出问题,我们在这三者里面只能选择两个。对于一个分布式系统来说,网络出问题是比较常见的,所以我们首先要选择P,这意味着我们在剩下的C和A之间只能选择一个。

CAP理论只是针对一个小的数据型的分布式系统,如果放大到整个业务系统,C和A的选择就更加复杂了。

比如有时候,我们直接对订单进行写库,这是倾向于保证数据一致性C,但如果数据库故障或者流量太大,写入不成功,导致当前的业务功能失败,也就是系统的可用性A产生了问题。如果我们不直接落库,先发订单数据到消息系统,再由消费者接收消息进行落库,这样即使单量很大或数据库有问题,最终订单还是可以落地,不影响当前的下单功能,保证了系统的可用性,但可能不同地方(比如缓存和数据库)的订单数据就有一致性的问题。

鱼和熊掌不能兼得,系统无法同时满足CAP的要求,我们就需要结合具体的业务场景,识别最突出的挑战,然后选择合适的组件,并以合理的方式去使用它们,最终保障系统的稳定运行,不产生大的业务问题。

技术架构的目标

好,现在你已经了解了系统的复杂性和软硬件的问题,那技术架构就要选择和组合各种软硬件,再结合我们开发的应用代码,来解决系统非功能性需求。

什么是系统非功能性需求呢?这是相对于业务需求来说的,所谓的业务需求就是保证业务逻辑正确,数据准确。比如一个订单,我们要保证订单各项数据是准确的,订单优惠和金额计算逻辑是正确的。而一个订单页面打开需要多少时间,页面是不是每次都能打开,这些就和具体的业务逻辑没有关系,属于系统非功能性需求的范畴。产品经理在一般情况下,也不会明确提这些需求。非功能性需求,有时候我们也称之为系统级功能,和业务功能相区分。

那对于一个系统来说,技术架构都要解决哪些非功能性需求呢?

系统的高可用

可用性的衡量标准是,系统正常工作的时间除以总体时间,通常用几个9来表示,比如3个9表示系统在99.9%的时间内可用,4个9表示99.99%的时间内可用,这里的正常工作表示系统可以在相对合理的时间内返回预计的结果。

导致系统可用性出问题,一般是两种情况:

系统的高性能

我们这里说的高性能,并不是指系统的绝对性能要多高,而是系统要提供合理的性能。比如说,我们要保证前端页面可以在3s内打开,这样用户体验比较好。

保证合理的性能分两种情况:

系统的可伸缩和低成本

系统的业务量在不同的时间点,有高峰有低谷,比如餐饮行业有午高峰和晚高峰,还有电商的大促场景。我们的架构设计要保证系统在业务高峰时,要能快速地增加资源来提升系统处理能力;反之,当业务低谷时,可以快速地减少系统资源,保证系统的低成本。

高可用、高性能、可伸缩和低成本,这些技术架构的目标不是孤立的,相互之间有关联,比如说有大流量请求进来,如果系统有很好的伸缩能力,它就能通过水平扩展的方式,保证系统有高性能,同时也实现了系统的高可用。如果系统的处理能力无法快速提升,无法保证高性能,那我们还是可以通过限流、降级等措施,保证核心系统的高可用。

我在前面也提到,这些目标很多时候会冲突,或者只能部分实现,我们在做技术架构设计时,不能不顾一切地要求达到所有目标,而是要根据业务特点,选择最关键的目标予以实现。

比如说,一个新闻阅读系统,它和订单、钱没有关系,即使短时间不可用,对用户影响也不大。但在出现热点新闻时,系统要能支持高并发的用户请求。因此,这里的设计,主要是考虑满足高性能,而不用太过于追求4个9或5个9的可用性。

总结

系统比我们想象的要复杂得多,这里,我和你分享了系统的物理模型,相信你不再局限于我们自己写的代码,而是对系统的整体结构有了更清晰的认识。

你还记得吗?在前面介绍业务架构时,我和你分享的是系统=模块+关系,而在这里介绍技术架构时,我和你分享的是系统的物理模型

因为业务架构解决的是系统功能性问题,我们更多的是从人出发,去更好地理解系统;而技术架构解决的是系统非功能性问题,我们在识别出业务上的性能、可用性等挑战后,更多的是从软硬件节点的处理能力出发,通过合理的技术选型和搭配,最终实现系统的高可用、高性能和可伸缩等目标。通过这一讲的介绍,相信你现在对技术架构的目标和常见的解决手段,已经有了更深入的理解。

当然,针对这些不同的目标,技术架构处理的原则和手段也是不一样的。后面的几讲中,我会针对每个目标,为你具体展开介绍。

最后,给你留一道思考题:技术架构除了我在课程中说的几个目标之外,还有哪些目标呢?

欢迎在留言区和我互动,我会第一时间给你反馈。如果这节课对你有帮助,也欢迎你把它分享给你的朋友。感谢阅读,我们下期再见。

评论