上一讲,在讲CPU的性能时,我们提到了这样一个公式:
这么来看,如果要提升计算机的性能,我们可以从指令数、CPI以及CPU主频这三个地方入手。要搞定指令数或者CPI,乍一看都不太容易。于是,研发CPU的硬件工程师们,从80年代开始,就挑上了CPU这个“软柿子”。在CPU上多放一点晶体管,不断提升CPU的时钟频率,这样就能让CPU变得更快,程序的执行时间就会缩短。
于是,从1978年Intel发布的8086 CPU开始,计算机的主频从5MHz开始,不断提升。1980年代中期的80386能够跑到40MHz,1989年的486能够跑到100MHz,直到2000年的奔腾4处理器,主频已经到达了1.4GHz。而消费者也在这20年里养成了“看主频”买电脑的习惯。当时已经基本垄断了桌面CPU市场的Intel更是夸下了海口,表示奔腾4所使用的CPU结构可以做到10GHz,颇有一点“大力出奇迹”的意思。
然而,计算机科学界从来不相信“大力出奇迹”。奔腾4的CPU主频从来没有达到过10GHz,最终它的主频上限定格在3.8GHz。这还不是最糟的,更糟糕的事情是,大家发现,奔腾4的主频虽然高,但是它的实际性能却配不上同样的主频。想要用在笔记本上的奔腾4 2.4GHz处理器,其性能只和基于奔腾3架构的奔腾M 1.6GHz处理器差不多。
于是,这一次的“大力出悲剧”,不仅让Intel的对手AMD获得了喘息之机,更是代表着“主频时代”的终结。后面几代Intel CPU主频不但没有上升,反而下降了。到如今,2019年的最高配置Intel i9 CPU,主频也只不过是5GHz而已。相较于1978年到2000年,这20年里300倍的主频提升,从2000年到现在的这19年,CPU的主频大概提高了3倍。
奔腾4的主频为什么没能超过3.8GHz的障碍呢?答案就是功耗问题。什么是功耗问题呢?我们先看一个直观的例子。
一个3.8GHz的奔腾4处理器,满载功率是130瓦。这个130瓦是什么概念呢?机场允许带上飞机的充电宝的容量上限是100瓦时。如果我们把这个CPU安在手机里面,不考虑屏幕内存之类的耗电,这个CPU满载运行45分钟,充电宝里面就没电了。而iPhone X使用ARM架构的CPU,功率则只有4.5瓦左右。
我们的CPU,一般都被叫作超大规模集成电路(Very-Large-Scale Integration,VLSI)。这些电路,实际上都是一个个晶体管组合而成的。CPU在计算,其实就是让晶体管里面的“开关”不断地去“打开”和“关闭”,来组合完成各种运算和功能。
想要计算得快,一方面,我们要在CPU里,同样的面积里面,多放一些晶体管,也就是增加密度;另一方面,我们要让晶体管“打开”和“关闭”得更快一点,也就是提升主频。而这两者,都会增加功耗,带来耗电和散热的问题。
这么说可能还是有点抽象,我还是给你举一个例子。你可以把一个计算机CPU想象成一个巨大的工厂,里面有很多工人,相当于CPU上面的晶体管,互相之间协同工作。
为了工作得快一点,我们要在工厂里多塞一点人。你可能会问,为什么不把工厂造得大一点呢?这是因为,人和人之间如果离得远了,互相之间走过去需要花的时间就会变长,这也会导致性能下降。这就好像如果CPU的面积大,晶体管之间的距离变大,电信号传输的时间就会变长,运算速度自然就慢了。
除了多塞一点人,我们还希望每个人的动作都快一点,这样同样的时间里就可以多干一点活儿了。这就相当于提升CPU主频,但是动作快,每个人就要出汗散热。要是太热了,对工厂里面的人来说会中暑生病,对CPU来说就会崩溃出错。
我们会在CPU上面抹硅脂、装风扇,乃至用上水冷或者其他更好的散热设备,就好像在工厂里面装风扇、空调,发冷饮一样。但是同样的空间下,装上风扇空调能够带来的散热效果也是有极限的。
因此,在CPU里面,能够放下的晶体管数量和晶体管的“开关”频率也都是有限的。一个CPU的功率,可以用这样一个公式来表示:
那么,为了要提升性能,我们需要不断地增加晶体管数量。同样的面积下,我们想要多放一点晶体管,就要把晶体管造得小一点。这个就是平时我们所说的提升“制程”。从28nm到7nm,相当于晶体管本身变成了原来的1/4大小。这个就相当于我们在工厂里,同样的活儿,我们要找瘦小一点的工人,这样一个工厂里面就可以多一些人。我们还要提升主频,让开关的频率变快,也就是要找手脚更快的工人。
但是,功耗增加太多,就会导致CPU散热跟不上,这时,我们就需要降低电压。这里有一点非常关键,在整个功耗的公式里面,功耗和电压的平方是成正比的。这意味着电压下降到原来的1/5,整个的功耗会变成原来的1/25。
事实上,从5MHz主频的8086到5GHz主频的Intel i9,CPU的电压已经从5V左右下降到了1V左右。这也是为什么我们CPU的主频提升了1000倍,但是功耗只增长了40倍。比如说,我写这篇文章用的是Surface Go,在这样的轻薄笔记本上,微软就是选择了把电压下降到0.25V的低电压CPU,使得笔记本能有更长的续航时间。
虽然制程的优化和电压的下降,在过去的20年里,让我们的CPU性能有所提升。但是从上世纪九十年代到本世纪初,软件工程师们所用的“面向摩尔定律编程”的套路越来越用不下去了。“写程序不考虑性能,等明年CPU性能提升一倍,到时候性能自然就不成问题了”,这种想法已经不可行了。
于是,从奔腾4开始,Intel意识到通过提升主频比较“难”去实现性能提升,边开始推出Core Duo这样的多核CPU,通过提升“吞吐率”而不是“响应时间”,来达到目的。
提升响应时间,就好比提升你用的交通工具的速度,比如原本你是开汽车,现在变成了火车乃至飞机。本来开车从上海到北京要20个小时,换成飞机就只要2个小时了,但是,在此之上,再想要提升速度就不太容易了。我们的CPU在奔腾4的年代,就好比已经到了飞机这个速度极限。
那你可能要问了,接下来该怎么办呢?相比于给飞机提速,工程师们又想到了新的办法,可以一次同时开2架、4架乃至8架飞机,这就好像我们现在用的2核、4核,乃至8核的CPU。
虽然从上海到北京的时间没有变,但是一次飞8架飞机能够运的东西自然就变多了,也就是所谓的“吞吐率”变大了。所以,不管你有没有需要,现在CPU的性能就是提升了2倍乃至8倍、16倍。这也是一个最常见的提升性能的方式,通过并行提高性能。
这个思想在很多地方都可以使用。举个例子,我们做机器学习程序的时候,需要计算向量的点积,比如向量$W = [W_0, W_1, W_2, …, W_{15}]$和向量 $X = [X_0, X_1, X_2, …, X_{15}]$,$W·X = W_0 * X_0 + W_1 * X_1 +$ $W_2 * X_2 + … + W_{15} * X_{15}$。这些式子由16个乘法和1个连加组成。如果你自己一个人用笔来算的话,需要一步一步算16次乘法和15次加法。如果这个时候我们把这个任务分配给4个人,同时去算$W_0~W_3$, $W_4~W_7$, $W_8~W_{11}$, $W_{12}~W_{15}$这样四个部分的结果,再由一个人进行汇总,需要的时间就会缩短。
但是,并不是所有问题,都可以通过并行提高性能来解决。如果想要使用这种思想,需要满足这样几个条件。
第一,需要进行的计算,本身可以分解成几个可以并行的任务。好比上面的乘法和加法计算,几个人可以同时进行,不会影响最后的结果。
第二,需要能够分解好问题,并确保几个人的结果能够汇总到一起。
第三,在“汇总”这个阶段,是没有办法并行进行的,还是得顺序执行,一步一步来。
这就引出了我们在进行性能优化中,常常用到的一个经验定律,阿姆达尔定律(Amdahl’s Law)。这个定律说的就是,对于一个程序进行优化之后,处理器并行运算之后效率提升的情况。具体可以用这样一个公式来表示:
在刚刚的向量点积例子里,4个人同时计算向量的一小段点积,就是通过并行提高了这部分的计算性能。但是,这4个人的计算结果,最终还是要在一个人那里进行汇总相加。这部分汇总相加的时间,是不能通过并行来优化的,也就是上面的公式里面不受影响的执行时间这一部分。
比如上面的各个向量的一小段的点积,需要100ns,加法需要20ns,总共需要120ns。这里通过并行4个CPU有了4倍的加速度。那么最终优化后,就有了100/4+20=45ns。即使我们增加更多的并行度来提供加速倍数,比如有100个CPU,整个时间也需要100/100+20=21ns。
我们可以看到,无论是简单地通过提升主频,还是增加更多的CPU核心数量,通过并行来提升性能,都会遇到相应的瓶颈。仅仅简单地通过“堆硬件”的方式,在今天已经不能很好地满足我们对于程序性能的期望了。于是,工程师们需要从其他方面开始下功夫了。
在“摩尔定律”和“并行计算”之外,在整个计算机组成层面,还有这样几个原则性的性能提升方法。
1.加速大概率事件。最典型的就是,过去几年流行的深度学习,整个计算过程中,99%都是向量和矩阵计算,于是,工程师们通过用GPU替代CPU,大幅度提升了深度学习的模型训练过程。本来一个CPU需要跑几小时甚至几天的程序,GPU只需要几分钟就好了。Google更是不满足于GPU的性能,进一步地推出了TPU。后面的文章,我也会为你讲解GPU和TPU的基本构造和原理。
2.通过流水线提高性能。现代的工厂里的生产线叫“流水线”。我们可以把装配iPhone这样的任务拆分成一个个细分的任务,让每个人都只需要处理一道工序,最大化整个工厂的生产效率。类似的,我们的CPU其实就是一个“运算工厂”。我们把CPU指令执行的过程进行拆分,细化运行,也是现代CPU在主频没有办法提升那么多的情况下,性能仍然可以得到提升的重要原因之一。我们在后面也会讲到,现代CPU里是如何通过流水线来提升性能的,以及反面的,过长的流水线会带来什么新的功耗和效率上的负面影响。
3.通过预测提高性能。通过预先猜测下一步该干什么,而不是等上一步运行的结果,提前进行运算,也是让程序跑得更快一点的办法。典型的例子就是在一个循环访问数组的时候,凭经验,你也会猜到下一步我们会访问数组的下一项。后面要讲的“分支和冒险”、“局部性原理”这些CPU和存储系统设计方法,其实都是在利用我们对于未来的“预测”,提前进行相应的操作,来提升我们的程序性能。
好了,到这里,我们讲完了计算机组成原理这门课的“前情提要”。一方面,整个组成乃至体系结构,都是基于冯·诺依曼架构组成的软硬件一体的解决方案。另一方面,你需要明白的就是,这里面的方方面面的设计和考虑,除了体系结构层面的抽象和通用性之外,核心需要考虑的是“性能”问题。
接下来,我们就要开始深入组成原理,从一个程序的运行讲起,开始我们的“机器指令”之旅。
如果你学有余力,关于本节内容,推荐你阅读下面两本书的对应章节,深入研读。
1.《计算机组成与设计:软/硬件接口》(第5版)的1.7和1.10节,也简单介绍了功耗墙和阿姆达尔定律,你可以拿来细细阅读。
2.如果你想对阿姆达尔定律有个更细致的了解,《深入理解计算机系统》(第3版)的1.9节不容错过。
我在这一讲里面,介绍了三种常见的性能提升思路,分别是,加速大概率事件、通过流水线提高性能和通过预测提高性能。请你想一下,除了在硬件和指令集的设计层面之外,你在软件开发层面,有用到过类似的思路来解决性能问题吗?
欢迎你在留言区写下你曾遇到的问题,和大家一起分享、探讨。你也可以把今天的文章分享给你朋友,和他一起学习和进步。
评论