你好,我是大圣。
上一讲我们学习了下一代Vuex框架Pinia的原理,今天我来带你分析Vue生态中另外一个重要的框架vue-router的源码。
课程中我们也实现过一个迷你的router,我们通过监听路由的变化,把路由数据包裹成响应式对象后,一旦路由发生变化,我们就去定义好的路由数据中查询当前路由对应的组件,在router-view中渲染即可。今天我们就进入到vue-router源码的内部,看一下实际的vue-router和我们实现的迷你版本有什么区别。
vue-router提供了createRouter方法来创建路由配置,我们传入每个路由地址对应的组件后,使用app.use在Vue中加载vue-router插件,并且给Vue注册了两个内置组件,router-view负责渲染当前路由匹配的组件,router-link负责页面的跳转。
我们先来看下createRouter如何实现,完整的代码你可以在GitHub上看到。这个函数比较长,还好我们有TypeScript,我们先看下createRouter的参数。
在下面的代码中,参数RouterOptions是规范我们配置的路由对象,主要包含history、routes等数据。routes就是我们需要配置的路由对象,类型是RouteRecordRaw组成的数组,并且RouteRecordRaw的类型是三个类型的合并。然后返回值的类型Router就是包含了addRoute、push、beforeEnter、install方法的一个对象,并且维护了currentRoute和options两个属性。
并且每个类型方法还有详细的注释,这也极大降低了阅读源码的门槛,可以帮助我们在看到函数的类型时就知道函数大概的功能。我们知道Vue中app.use实际上执行的就是router对象内部的install方法,我们先进入到install方法看下是如何安装的。
// createRouter传递参数的类型
export interface RouterOptions extends PathParserOptions {
history: RouterHistory
routes: RouteRecordRaw[]
scrollBehavior?: RouterScrollBehavior
...
}
// 每个路由配置的类型
export type RouteRecordRaw =
| RouteRecordSingleView
| RouteRecordMultipleViews
| RouteRecordRedirect
//... other config
// Router接口的全部方法和属性
export interface Router {
readonly currentRoute: Ref<RouteLocationNormalizedLoaded>
readonly options: RouterOptions
addRoute(parentName: RouteRecordName, route: RouteRecordRaw): () => void
addRoute(route: RouteRecordRaw): () => void
Route(name: RouteRecordName): void
hasRoute(name: RouteRecordName): boolean
getRoutes(): RouteRecord[]
resolve(
to: RouteLocationRaw,
currentLocation?: RouteLocationNormalizedLoaded
): RouteLocation & { href: string }
push(to: RouteLocationRaw): Promise<NavigationFailure | void | undefined>
replace(to: RouteLocationRaw): Promise<NavigationFailure | void | undefined>
back(): ReturnType<Router['go']>
forward(): ReturnType<Router['go']>
go(delta: number): void
beforeEach(guard: NavigationGuardWithThis<undefined>): () => void
beforeResolve(guard: NavigationGuardWithThis<undefined>): () => void
afterEach(guard: NavigationHookAfter): () => void
onError(handler: _ErrorHandler): () => void
isReady(): Promise<void>
install(app: App): void
}
export function createRouter(options: RouterOptions): Router {
}
从下面的代码中我们可以看到,在createRouter的最后,创建了包含addRoute、push等方法的对象,并且install方法内部注册了RouterLink和RouterView两个组件。所以我们可以在任何组件内部直接使用<router-view>和<router-link>组件,然后注册全局变量$router和$route,其中$router就是我们通过createRouter返回的路由对象,包含addRoute、push等方法,$route使用defineProperty的形式返回currentRoute的值,可以做到和currentRoute值同步。
然后使用computed把路由变成响应式对象,存储在reactiveRoute对象中,再通过app.provide给全局注册了route和reactive包裹后的reactiveRoute对象。我们之前介绍provide函数的时候也介绍了,provide提供的数据并没有做响应式的封装,需要响应式的时候需要自己使用ref或者reactive封装为响应式对象,最后注册unmount方法实现vue-router的安装。
export function createRouter(options: RouterOptions): Router {
....
let started: boolean | undefined
const installedApps = new Set<App>()
// 路由对象
const router: Router = {
currentRoute,
addRoute,
removeRoute,
hasRoute,
getRoutes,
resolve,
options,
push,
replace,
go,
back: () => go(-1),
forward: () => go(1),
beforeEach: beforeGuards.add,
beforeResolve: beforeResolveGuards.add,
afterEach: afterGuards.add,
onError: errorHandlers.add,
isReady,
// 插件按章
install(app: App) {
const router = this
// 注册全局组件 router-link和router-view
app.component('RouterLink', RouterLink)
app.component('RouterView', RouterView)
app.config.globalProperties.$router = router
Object.defineProperty(app.config.globalProperties, '$route', {
enumerable: true,
get: () => unref(currentRoute),
})
if (
isBrowser &&
!started &&
currentRoute.value === START_LOCATION_NORMALIZED
) {
// see above
started = true
push(routerHistory.location).catch(err => {
if (__DEV__) warn('Unexpected error when starting the router:', err)
})
}
const reactiveRoute = {} as {
[k in keyof RouteLocationNormalizedLoaded]: ComputedRef<
RouteLocationNormalizedLoaded[k]
>
}
for (const key in START_LOCATION_NORMALIZED) {
// @ts-expect-error: the key matches
reactiveRoute[key] = computed(() => currentRoute.value[key])
}
// 提供全局配置
app.provide(routerKey, router)
app.provide(routeLocationKey, reactive(reactiveRoute))
app.provide(routerViewLocationKey, currentRoute)
const unmountApp = app.unmount
installedApps.add(app)
app.unmount = function () {
installedApps.delete(app)
// ...
unmountApp()
}
if ((__DEV__ || __FEATURE_PROD_DEVTOOLS__) && isBrowser) {
addDevtools(app, router, matcher)
}
},
}
return router
}
路由对象创建和安装之后,我们下一步需要了解的就是router-link和router-view两个组件的实现方式。
通过下面的代码我们可以看到,RouterView的setup函数返回了一个函数,这个函数就是RouterView组件的render函数。大部分我们使用的方式就是一个<router-view />组件,没有slot情况下返回的就是component变量。component使用h函数返回ViewComponent的虚拟DOM,而ViewComponent是根据matchedRoute.components[props.name]计算而来。
matchedRoute依赖的matchedRouteRef的计算逻辑在如下代码的第12~15行,数据来源injectedRoute就是上面我们注入的currentRoute对象。
export const RouterViewImpl = /*#__PURE__*/ defineComponent({
name: 'RouterView',
props: {
name: {
type: String as PropType<string>,
default: 'default',
},
route: Object as PropType<RouteLocationNormalizedLoaded>,
},
// router-view组件源码
setup(props, { attrs, slots }) {
// 全局的reactiveRoute对象注入
const injectedRoute = inject(routerViewLocationKey)!
const routeToDisplay = computed(() => props.route || injectedRoute.value)
const depth = inject(viewDepthKey, 0)
const matchedRouteRef = computed<RouteLocationMatched | undefined>(
() => routeToDisplay.value.matched[depth]
)
// 嵌套层级
provide(viewDepthKey, depth + 1)
// 匹配的router对象
provide(matchedRouteKey, matchedRouteRef)
provide(routerViewLocationKey, routeToDisplay)
const viewRef = ref<ComponentPublicInstance>()
// 返回的render函数
return () => {
const route = routeToDisplay.value
const matchedRoute = matchedRouteRef.value
const ViewComponent = matchedRoute && matchedRoute.components[props.name]
const currentName = props.name
if (!ViewComponent) {
return normalizeSlot(slots.default, { Component: ViewComponent, route })
}
// props from route configuration
const routePropsOption = matchedRoute!.props[props.name]
const routeProps = routePropsOption
? routePropsOption === true
? route.params
: typeof routePropsOption === 'function'
? routePropsOption(route)
: routePropsOption
: null
const onVnodeUnmounted: VNodeProps['onVnodeUnmounted'] = vnode => {
// remove the instance reference to prevent leak
if (vnode.component!.isUnmounted) {
matchedRoute!.instances[currentName] = null
}
}
// 创建需要渲染组件的虚拟dom
const component = h(
ViewComponent,
assign({}, routeProps, attrs, {
onVnodeUnmounted,
ref: viewRef,
})
)
return (
// pass the vnode to the slot as a prop.
// h and <component :is="..."> both accept vnodes
normalizeSlot(slots.default, { Component: component, route }) ||
component
)
}
},
})
到这我们可以看出,RouterView渲染的组件是由当前匹配的路由变量matchedRoute决定的。接下来我们回到createRouter函数中,可以看到matcher对象是由createRouterMatcher创建,createRouterMatcher函数传入routes配置的路由数组,并且返回创建的RouterMatcher对象,内部遍历routes数组,通过addRoute挨个处理路由配置。
export function createRouter(options: RouterOptions): Router {
const matcher = createRouterMatcher(options.routes, options)
///....
}
export function createRouterMatcher(
routes: RouteRecordRaw[],
globalOptions: PathParserOptions
): RouterMatcher {
// matchers数组
const matchers: RouteRecordMatcher[] = []
// matcher对象
const matcherMap = new Map<RouteRecordName, RouteRecordMatcher>()
globalOptions = mergeOptions(
{ strict: false, end: true, sensitive: false } as PathParserOptions,
globalOptions
)
function addRoute(){}
function remoteRoute(){}
function getRoutes(){
return matchers
}
function insertMatcher(){}
function resolve(){}
// add initial routes
routes.forEach(route => addRoute(route))
return { addRoute, resolve, removeRoute, getRoutes, getRecordMatcher }
}
在下面的代码中我们可以看到,addRoute函数内部通过createRouteRecordMatcher创建扩展之后的matcher对象,包括了record、parent、children等树形,可以很好地描述路由之间的嵌套父子关系。这样整个路由对象就已经创建完毕,那我们如何在路由切换的时候寻找到正确的路由对象呢?
function addRoute(
record: RouteRecordRaw,
parent?: RouteRecordMatcher,
originalRecord?: RouteRecordMatcher
){
if ('alias' in record) {
// 标准化alias
}
for (const normalizedRecord of normalizedRecords) {
// ...
matcher = createRouteRecordMatcher(normalizedRecord, parent, options)
insertMatcher(matcher)
}
return originalMatcher
? () => {
// since other matchers are aliases, they should be removed by the original matcher
removeRoute(originalMatcher!)
}
: noop
}
export function createRouteRecordMatcher(
record: Readonly<RouteRecord>,
parent: RouteRecordMatcher | undefined,
options?: PathParserOptions
): RouteRecordMatcher {
const parser = tokensToParser(tokenizePath(record.path), options)
const matcher: RouteRecordMatcher = assign(parser, {
record,
parent,
// these needs to be populated by the parent
children: [],
alias: [],
})
if (parent) {
if (!matcher.record.aliasOf === !parent.record.aliasOf)
parent.children.push(matcher)
}
return matcher
}
在vue-router中,路由更新可以通过router-link渲染的链接实现,也可以使用router对象的push等方法实现。下面的代码中,router-link组件内部也是渲染一个a标签,并且注册了a标签的onClick函数,内部也是通过router.replace或者router.push来实现。
export const RouterLinkImpl = /*#__PURE__*/ defineComponent({
name: 'RouterLink',
props: {
to: {
type: [String, Object] as PropType<RouteLocationRaw>,
required: true,
},
...
},
// router-link源码
setup(props, { slots }) {
const link = reactive(useLink(props))
const { options } = inject(routerKey)!
const elClass = computed(() => ({
...
}))
return () => {
const children = slots.default && slots.default(link)
return props.custom
? children
: h(
'a',
{
href: link.href,
onClick: link.navigate,
class: elClass.value,
},
children
)
}
},
})
// 跳转
function navigate(
e: MouseEvent = {} as MouseEvent
): Promise<void | NavigationFailure> {
if (guardEvent(e)) {
return router[unref(props.replace) ? 'replace' : 'push'](
unref(props.to)
// avoid uncaught errors are they are logged anyway
).catch(noop)
}
return Promise.resolve()
}
现在我们回到createRouter函数中,可以看到push函数直接调用了pushWithRedirect函数来实现,内部通过resolve(to)生成targetLocation变量。这个变量会赋值给toLocation,然后执行navigate(toLocation)函数。而这个函数内部会执行一系列的导航守卫函数,最后会执行finalizeNavigation函数完成导航。
function push(to: RouteLocationRaw | RouteLocation) {
return pushWithRedirect(to)
}
function replace(to: RouteLocationRaw | RouteLocationNormalized) {
return push(assign(locationAsObject(to), { replace: true }))
}
// 路由跳转函数
function pushWithRedirect(
to: RouteLocationRaw | RouteLocation,
redirectedFrom?: RouteLocation
): Promise<NavigationFailure | void | undefined> {
const targetLocation: RouteLocation = (pendingLocation = resolve(to))
const from = currentRoute.value
const data: HistoryState | undefined = (to as RouteLocationOptions).state
const force: boolean | undefined = (to as RouteLocationOptions).force
// to could be a string where `replace` is a function
const replace = (to as RouteLocationOptions).replace === true
const toLocation = targetLocation as RouteLocationNormalized
return (failure ? Promise.resolve(failure) : navigate(toLocation, from))
.catch((error: NavigationFailure | NavigationRedirectError) =>
isNavigationFailure(error)
? error
: // reject any unknown error
triggerError(error, toLocation, from)
)
.then((failure: NavigationFailure | NavigationRedirectError | void) => {
failure = finalizeNavigation(
toLocation as RouteLocationNormalizedLoaded,
from,
true,
replace,
data
)
triggerAfterEach(
toLocation as RouteLocationNormalizedLoaded,
from,
failure
)
return failure
})
}
在下面的代码中我们可以看到,finalizeNavigation函数内部通过routerHistory.push或者replace实现路由跳转,并且更新currentRoute.value。
currentRoute就是我们在install方法中注册的全局变量$route,每次页面跳转currentRoute都会更新为toLocation,在任意组件中都可以通过$route变量来获取当前路由的数据,最后在handleScroll设置滚动行为。
routerHistory在createRouter中通过option.history获取,就是我们创建vue-router应用时通过createWebHistory或者createWebHashHistory创建的对象。createWebHistory返回的是HTML5的history模式路由对象,createWebHashHistory是Hash模式的路由对象。
function finalizeNavigation(
toLocation: RouteLocationNormalizedLoaded,
from: RouteLocationNormalizedLoaded,
isPush: boolean,
replace?: boolean,
data?: HistoryState
): NavigationFailure | void {
const isFirstNavigation = from === START_LOCATION_NORMALIZED
const state = !isBrowser ? {} : history.state
if (isPush) {
if (replace || isFirstNavigation)
routerHistory.replace(
toLocation.fullPath
)
else routerHistory.push(toLocation.fullPath, data)
}
// accept current navigation
currentRoute.value = toLocation
handleScroll(toLocation, from, isPush, isFirstNavigation)
markAsReady()
}
function markAsReady(err?: any): void {
if (ready) return
ready = true
setupListeners()
readyHandlers
.list()
.forEach(([resolve, reject]) => (err ? reject(err) : resolve()))
readyHandlers.reset()
}
下面的代码中我们可以看到,createWebHashHistory和createWebHistory的实现,内部都是通过useHistoryListeners实现路由的监听,通过useHistoryStateNavigation实现路由的切换。useHistoryStateNavigation会返回push或者replace方法来更新路由,这两个函数你可以在GitHub上自行学习。
export function createWebHashHistory(base?: string): RouterHistory {
base = location.host ? base || location.pathname + location.search : ''
// allow the user to provide a `#` in the middle: `/base/#/app`
if (!base.includes('#')) base += '#'
return createWebHistory(base)
}
export function createWebHistory(base?: string): RouterHistory {
base = normalizeBase(base)
const historyNavigation = useHistoryStateNavigation(base)
const historyListeners = useHistoryListeners(
base,
historyNavigation.state,
historyNavigation.location,
historyNavigation.replace
)
function go(delta: number, triggerListeners = true) {
if (!triggerListeners) historyListeners.pauseListeners()
history.go(delta)
}
const routerHistory: RouterHistory = assign(
{
// it's overridden right after
location: '',
base,
go,
createHref: createHref.bind(null, base),
},
historyNavigation,
historyListeners
)
Object.defineProperty(routerHistory, 'location', {
enumerable: true,
get: () => historyNavigation.location.value,
})
Object.defineProperty(routerHistory, 'state', {
enumerable: true,
get: () => historyNavigation.state.value,
})
return routerHistory
}
以上就是今天的主要内容,我们来总结一下。
这节课我们进入到vue-router的源码中分析了vue-router内部的执行逻辑,其实我们之前课上已经实现了迷你的vue-router,在掌握了前端路由实现的原理后,再来看实际的vue-router源码难度会下降不少。
首先我们分析了createRouter函数入口函数,createRouter函数返回了router对象,router对象提供了addRoute、push等方法,并且在install方法中实现了路由,注册了组件router-link和router-view。
然后通过createRouterMatcher创建路由匹配对象,并且在路由变化的时候维护currentRoute,让你可以在每个组件内部$router和$route获取路由匹配的数据,并且动态渲染当前路由匹配的组件到router-view组件内部,实现了前端的路由系统。
这一讲我们也能感受到,一个玩具的router和实际的vue-router的距离,也能体会到TypeScript在我们阅读代码时的好处。我们阅读源码的目的之一,就是要学习和模仿优秀框架内部的设计思路,然后去优化自己项目中的代码,学会模仿也是一个优秀程序员的优秀品质。
最后留给你一个思考题,navigate函数负责执行路由守卫的功能,你知道它的内部是如何实现的吗?
欢迎在评论区分享你的答案,我们下一讲再见!