在做语法分析时我们可以得到一棵语法树,而基于这棵树能做什么,是语义的事情。比如,+号的含义是让两个数值相加,并且通常还能进行缺省的类型转换。所以,如果要区分不同语言的差异,不能光看语言的语法。比如Java语言和JavaScript在代码块的语法上是一样的,都是用花括号,但在语义上是不同的,一个有块作用域,一个没有。
这样看来,相比词法和语法的设计与处理,语义设计和分析似乎要复杂很多。虽然我们借作用域、生存期、函数等特性的实现涉猎了很多语义分析的场景,但离系统地掌握语义分析,还差一点儿火候。所以,为了帮你攻破语义分析这个阶段,我会用两节课的时间,再梳理一下语义分析中的重要知识,让你更好地建立起相关的知识脉络。
今天这节课,我们把注意力集中在类型系统这个话题上。
围绕类型系统产生过一些争论,有的程序员会拥护动态类型语言,有的会觉得静态类型语言好。要想探究这个问题,我们需要对类型系统有个清晰的了解,最直接的方式,就是建立一个完善的类型系统。
那么什么是类型系统?我们又该怎样建立一个完善的类型系统呢?
其实,类型系统是一门语言所有的类型的集合,操作这些类型的规则,以及类型之间怎么相互作用的(比如一个类型能否转换成另一个类型)。如果要建立一个完善的类型系统,形成对类型系统比较完整的认知,需要从两个方面出发:
先从第一个方面出发看一下。
在进入这个话题之前,我想先问你一个有意义的问题:类型到底是什么?我们说一个类型的时候,究竟在说什么?
要知道,在机器代码这个层面,其实是分不出什么数据类型的。在机器指令眼里,那就是0101,它并不对类型做任何要求,不需要知道哪儿是一个整数,哪儿代表着一个字符,哪儿又是内存地址。你让它做什么操作都可以,即使这个操作没有意义,比如把一个指针值跟一个字符相加。
那么高级语言为什么要增加类型这种机制呢?
对类型做定义很难,但大家公认的有一个说法:类型是针对一组数值,以及在这组数值之上的一组操作。比如,对于数字类型,你可以对它进行加减乘除算术运算,对于字符串就不行。
所以,类型是高级语言赋予的一种语义,有了类型这种机制,就相当于定了规矩,可以检查施加在数据上的操作是否合法。因此类型系统最大的好处,就是可以通过类型检查降低计算出错的概率。所以,现代计算机语言都会精心设计一个类型系统,而不是像汇编语言那样完全不区分类型。
不过,类型系统的设计有很多需要取舍和权衡的方面,比如:
虽然类型系统的设计有很多需要取舍和权衡的方面,但它最需要考虑的是,是否符合这门语言想解决的问题,我们用静态类型语言和动态类型语言分析一下。
根据类型检查是在编译期还是在运行期进行的,我们可以把计算机语言分为两类:
静态类型语言的拥护者说:
因为编译期做了类型检查,所以程序错误较少,运行期不用再检查类型,性能更高。像C、Java和Go语言,在编译时就对类型做很多处理,包括检查类型是否匹配,以及进行缺省的类型转换,大大降低了程序出错的可能性,还能让程序运行效率更高,因为不需要在运行时再去做类型检查和转换。
而动态类型语言的拥护者说:
静态语言太严格,还要一遍遍编译,编程效率低,用动态类型语言方便进行快速开发。JavaScript、Python、PHP等都是动态类型的。
客观地讲,这些说法都有道理。目前的趋势是,某些动态类型语言在想办法增加一些机制,在编译期就能做类型检查,比如用TypeScript代替JavaScript编写程序,做完检查后再输出成JavaScript。而某些静态语言呢,却又发明出一些办法,部分地绕过类型检查,从而提供动态类型语言的灵活性。
再延伸一下,跟静态类型和动态类型概念相关联的,还有强类型和弱类型。强类型语言中,变量的类型一旦声明就不能改变,弱类型语言中,变量类型在运行期时可以改变。二者的本质区别是,强类型语言不允许违法操作,因为能够被检查出来,弱类型语言则从机制上就无法禁止违法操作,所以是不安全的。比如你写了一个表达式a*b。如果a和b这两个变量是数值,这个操作就没有问题,但如果a或b不是数值,那就没有意义了,弱类型语言可能就检查不出这类问题。
也就是,静态类型和动态类型说的是什么时候检查的问题,强类型和弱类型说的是就算检查,也检查不出来,或者没法检查的问题,这两组概念经常会被搞混,所以我在这里带你了解一下。
接着说回来。关于类型特征的取舍,是根据领域问题而定的。举例来说,很多人可能都觉得强类型更好,但对于儿童编程启蒙来说,他们最好尽可能地做各种尝试,如果必须遵守与类型有关的规则,程序总是跑不起来,可能会打击到他们。
对于playscript而言,因为目前是用来做教学演示的,所以我们尽可能地多涉及与类型处理有关的情况,供大家体会算法,或者在自己的工作中借鉴。
首先,playscript是静态类型和强类型的,所以几乎要做各种类型检查,你可以参考看看这些都是怎么做的。
第二,我们既支持对象,也支持原生的基础数据类型。这两种类型的处理特点不一样,你也可以借鉴一下。后面面向对象的一讲,我会再讲与之相关的子类型(Subtyping)和运行时类型信息(Run Time Type Information, RTTI)的概念,这里就不展开了。
第三,我们还支持函数作为一等公民,也就是支持函数的类型。函数的类型是它的原型,包括返回值和参数,原型一样的函数,就看做是同样类型的,可以进行赋值。这样,你也就可以了解实现函数式编程特性时,要处理哪些额外的类型问题。
接下来,我们来说一说如何做类型检查、类型推导和类型转换。
先来看一看,如果编写一个编译器,我们在做类型分析时会遇到哪些问题。以下面这个最简单的表达式为例,这个表达式在不同的情况下会有不同的运行结果:
a = b + 10
类型的检查、推导和转换是三个工作,可是采用的技术手段差不多,所以我们放在一起讲,先来看看类型的推导。
在早期的playscript的实现中,是假设运算符两边的类型都是整型的,并做了强制转换。
这在实际应用中,当然不够用,因为我们还需要用到其他的数据类型。那怎么办呢?在运行时再去判断和转换吗?当然可以,但我们还有更好的选择,就是在编译期先判断出表达式的类型来。比如下面这段代码,是在RefResolve.java中,推导表达式的类型:
case PlayScriptParser.ADD:
if (type1 == PrimitiveType.String ||
type2 == PrimitiveType.String){
type = PrimitiveType.String;
}
else if (type1 instanceof PrimitiveType &&
type2 instanceof PrimitiveType){
//类型“向上”对齐,比如一个int和一个float,取float
type = PrimitiveType.getUpperType(type1,type2);
}else{
at.log("operand should be PrimitiveType for additive operation", ctx);
}
break;
这段代码提到,如果操作符号两边有一边数据类型是String类型的,那整个表达式就是String类型的。如果是其他基础类型的,就要按照一定的规则进行类型的转换,并确定运算结果的类型。比如,+号一边是double类型的,另一边是int类型的,那就要把int型的转换成double型的,最后计算结果也是double类型的。
做了类型的推导以后,我们就可以简化运行期的计算,不需要在运行期做类型判断了:
private Object add(Object obj1, Object obj2, Type targetType) {
Object rtn = null;
if (targetType == PrimitiveType.String) {
rtn = String.valueOf(obj1) +
String.valueOf(obj2);
} else if (targetType == PrimitiveType.Integer) {
rtn = ((Number)obj1).intValue() +
((Number)obj2).intValue();
} else if (targetType == PrimitiveType.Float) {
rtn = ((Number)obj1).floatValue()+
((Number)obj2).floatValue();
}
...
return rtn;
}
通过这个类型推导的例子,我们又可以引出S属性(Synthesized Attribute)的知识点。如果一种属性能够从下级节点推导出来,那么这种属性就叫做S属性,字面意思是综合属性,就是在AST中从下级的属性归纳、综合出本级的属性。更准确地说,是通过下级节点和自身来确定的。
与S属性相对应的是I属性(Inherited Attribute),也就是继承属性,即AST中某个节点的属性是由上级节点、兄弟节点和它自身来决定的,比如:
int a;
变量a的类型是int,这个很直观,因为变量声明语句中已经指出了a的类型,但这个类型可不是从下级节点推导出来的,而是从兄弟节点推导出来的。
在PlayScript.g4中,变量声明的相关语法如下:
variableDeclarators
: typeType variableDeclarator (',' variableDeclarator)*
;
variableDeclarator
: variableDeclaratorId ('=' variableInitializer)?
;
variableDeclaratorId
: IDENTIFIER ('[' ']')*
;
typeType
: (classOrInterfaceType| functionType | primitiveType) ('[' ']')*
;
把int a;这样一个简单的变量声明语句解析成AST,就形成了一棵有两个分枝的树:
这棵树的左枝,可以从下向上推导类型,所以类型属性也就是S属性。而右枝则必须从根节点(也就是variableDeclarators)往下继承类型属性,所以对于a这个节点来说,它的类型属性是I属性。
这里插一句,RefResolver.java实现了PlayScriptListener接口。这样,我们可以用标准的方法遍历AST。代码中的enterXXX()方法表示刚进入这个节点,exitXXX()方法表示退出这个节点,这时所有的子节点都已经遍历过了。在计算S属性时,我一定是在exitXXX()方法中,因为可以利用下级节点的类型推导出自身节点的类型。
很多现代语言会支持自动类型推导,例如Go语言就有两种声明变量的方式:
var a int = 10 //第一种
a := 10 //第二种
第一种方式,a的类型是显式声明的;第二种方式,a的类型是由右边的表达式推导出来
的。从生成的AST中,你能看到它们都是经历了从下到上的综合,再从上到下的继承的过程:
说完了类型推导,我们再看看类型检查。
类型检查主要出现在几个场景中:
类型检查还有一个特点:以赋值语句为例,左边的类型,是I属性,是从声明中得到的;右边的类型是S属性,是自下而上综合出来的。当左右两边的类型相遇之后,就要检查二者是否匹配,被赋值的变量要满足左边的类型要求。
如果匹配,自然没有问题,如果不完全匹配,也不一定马上报错,而是要看看是否能进行类型转换。比如,一般的语言在处理整型和浮点型的混合运算时,都能进行自动的转换。像JavaScript和SQL,甚至能够在算术运算时,自动将字符串转换成数字。在MySQL里,运行下面的语句,会得到3,它自动将’2’转换成了数字:
select 1 + '2';
这个过程其实是有风险的,这就像在强类型的语言中开了一个后门,绕过或部分绕过了编译器的类型检查功能。把父类转成子类的场景中,编译器顶多能检查这两个类之间是否有继承关系,如果连继承关系都没有,这当然能检查出错误,制止这种转换。但一个基类的子类可能是很多的,具体这个转换对不对,只有到运行期才能检查出错误来。C语言因为可以强制做各种转换,这个后门开的就更大了。不过这也是C语言要达到它的设计目的,必须具备的特性。
关于类型的处理,大家可以参考playscript的示例代码,里面有三个类可以看一看:
本节课我们重点探讨了语义分析和语言设计中的一个重要话题:类型系统。
理解类型系统,了解它的本质对我们学习语言会有很大的帮助。我希望在这个过程中,你不会再被静态类型和动态类型,强类型和弱类型这样的概念难倒,甚至可以质疑已有的一些观念。比如,如果你仔细研究,会发现静态类型和动态类型不是绝对的,静态类型的语言如Java,也会在运行期去处理一些类型检查。强类型和弱类型可能也不是绝对的,就像C语言,你如果不允许做任何强制类型转换,不允许指针越界,那它也就完全变成强类型的了。
掌握对计算机语言更深一点儿的理解能力,将会是你学习编译原理的额外回报!
针对今天讲的类型系统的知识,你所熟悉的语言是静态类型的,还是动态类型的?是强类型的,还是弱类型的?它的类型系统中有哪些你觉得有意思或者引起你困扰的设计?欢迎在留言区分享你的发现。
最后,感谢你的阅读,如果这篇文章让你有所收获,也欢迎你将它分享给更多的朋友。
本节课相关的示例代码放在文末,供你参考。
评论