你好,我是盛延敏,今天是网络编程实战性能篇的答疑模块,欢迎回来。
在性能篇中,我主要围绕C10K问题进行了深入剖析,最后引出了事件分发机制和多线程。可以说,基于epoll的事件分发能力,是Linux下高性能网络编程的不二之选。如果你觉得还不过瘾,期望有更深刻的认识和理解,那么在性能篇的答疑中,我就带你一起梳理一下epoll的源代码,从中我们一定可以有更多的发现和领悟。
今天的代码有些多,建议你配合文稿收听音频。
在开始研究源代码之前,我们先看一下epoll中使用的数据结构,分别是eventpoll、epitem和eppoll_entry。
我们先看一下eventpoll这个数据结构,这个数据结构是我们在调用epoll_create之后内核侧创建的一个句柄,表示了一个epoll实例。后续如果我们再调用epoll_ctl和epoll_wait等,都是对这个eventpoll数据进行操作,这部分数据会被保存在epoll_create创建的匿名文件file的private_data字段中。
/*
* This structure is stored inside the "private_data" member of the file
* structure and represents the main data structure for the eventpoll
* interface.
*/
struct eventpoll {
/* Protect the access to this structure */
spinlock_t lock;
/*
* This mutex is used to ensure that files are not removed
* while epoll is using them. This is held during the event
* collection loop, the file cleanup path, the epoll file exit
* code and the ctl operations.
*/
struct mutex mtx;
/* Wait queue used by sys_epoll_wait() */
//这个队列里存放的是执行epoll_wait从而等待的进程队列
wait_queue_head_t wq;
/* Wait queue used by file->poll() */
//这个队列里存放的是该eventloop作为poll对象的一个实例,加入到等待的队列
//这是因为eventpoll本身也是一个file, 所以也会有poll操作
wait_queue_head_t poll_wait;
/* List of ready file descriptors */
//这里存放的是事件就绪的fd列表,链表的每个元素是下面的epitem
struct list_head rdllist;
/* RB tree root used to store monitored fd structs */
//这是用来快速查找fd的红黑树
struct rb_root_cached rbr;
/*
* This is a single linked list that chains all the "struct epitem" that
* happened while transferring ready events to userspace w/out
* holding ->lock.
*/
struct epitem *ovflist;
/* wakeup_source used when ep_scan_ready_list is running */
struct wakeup_source *ws;
/* The user that created the eventpoll descriptor */
struct user_struct *user;
//这是eventloop对应的匿名文件,充分体现了Linux下一切皆文件的思想
struct file *file;
/* used to optimize loop detection check */
int visited;
struct list_head visited_list_link;
#ifdef CONFIG_NET_RX_BUSY_POLL
/* used to track busy poll napi_id */
unsigned int napi_id;
#endif
};
你能看到在代码中我提到了epitem,这个epitem结构是干什么用的呢?
每当我们调用epoll_ctl增加一个fd时,内核就会为我们创建出一个epitem实例,并且把这个实例作为红黑树的一个子节点,增加到eventpoll结构体中的红黑树中,对应的字段是rbr。这之后,查找每一个fd上是否有事件发生都是通过红黑树上的epitem来操作。
/*
* Each file descriptor added to the eventpoll interface will
* have an entry of this type linked to the "rbr" RB tree.
* Avoid increasing the size of this struct, there can be many thousands
* of these on a server and we do not want this to take another cache line.
*/
struct epitem {
union {
/* RB tree node links this structure to the eventpoll RB tree */
struct rb_node rbn;
/* Used to free the struct epitem */
struct rcu_head rcu;
};
/* List header used to link this structure to the eventpoll ready list */
//将这个epitem连接到eventpoll 里面的rdllist的list指针
struct list_head rdllink;
/*
* Works together "struct eventpoll"->ovflist in keeping the
* single linked chain of items.
*/
struct epitem *next;
/* The file descriptor information this item refers to */
//epoll监听的fd
struct epoll_filefd ffd;
/* Number of active wait queue attached to poll operations */
//一个文件可以被多个epoll实例所监听,这里就记录了当前文件被监听的次数
int nwait;
/* List containing poll wait queues */
struct list_head pwqlist;
/* The "container" of this item */
//当前epollitem所属的eventpoll
struct eventpoll *ep;
/* List header used to link this item to the "struct file" items list */
struct list_head fllink;
/* wakeup_source used when EPOLLWAKEUP is set */
struct wakeup_source __rcu *ws;
/* The structure that describe the interested events and the source fd */
struct epoll_event event;
};
每次当一个fd关联到一个epoll实例,就会有一个eppoll_entry产生。eppoll_entry的结构如下:
/* Wait structure used by the poll hooks */
struct eppoll_entry {
/* List header used to link this structure to the "struct epitem" */
struct list_head llink;
/* The "base" pointer is set to the container "struct epitem" */
struct epitem *base;
/*
* Wait queue item that will be linked to the target file wait
* queue head.
*/
wait_queue_entry_t wait;
/* The wait queue head that linked the "wait" wait queue item */
wait_queue_head_t *whead;
};
我们在使用epoll的时候,首先会调用epoll_create来创建一个epoll实例。这个函数是如何工作的呢?
首先,epoll_create会对传入的flags参数做简单的验证。
/* Check the EPOLL_* constant for consistency. */
BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
if (flags & ~EPOLL_CLOEXEC)
return -EINVAL;
/*
接下来,内核申请分配eventpoll需要的内存空间。
/* Create the internal data structure ("struct eventpoll").
*/
error = ep_alloc(&ep);
if (error < 0)
return error;
在接下来,epoll_create为epoll实例分配了匿名文件和文件描述字,其中fd是文件描述字,file是一个匿名文件。这里充分体现了UNIX下一切都是文件的思想。注意,eventpoll的实例会保存一份匿名文件的引用,通过调用fd_install函数将匿名文件和文件描述字完成了绑定。
这里还有一个特别需要注意的地方,在调用anon_inode_get_file的时候,epoll_create将eventpoll作为匿名文件file的private_data保存了起来,这样,在之后通过epoll实例的文件描述字来查找时,就可以快速地定位到eventpoll对象了。
最后,这个文件描述字作为epoll的文件句柄,被返回给epoll_create的调用者。
/*
* Creates all the items needed to setup an eventpoll file. That is,
* a file structure and a free file descriptor.
*/
fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
if (fd < 0) {
error = fd;
goto out_free_ep;
}
file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
O_RDWR | (flags & O_CLOEXEC));
if (IS_ERR(file)) {
error = PTR_ERR(file);
goto out_free_fd;
}
ep->file = file;
fd_install(fd, file);
return fd;
接下来,我们看一下一个套接字是如何被添加到epoll实例中的。这就要解析一下epoll_ctl函数实现了。
首先,epoll_ctl函数通过epoll实例句柄来获得对应的匿名文件,这一点很好理解,UNIX下一切都是文件,epoll的实例也是一个匿名文件。
//获得epoll实例对应的匿名文件
f = fdget(epfd);
if (!f.file)
goto error_return;
接下来,获得添加的套接字对应的文件,这里tf表示的是target file,即待处理的目标文件。
/* Get the "struct file *" for the target file */
//获得真正的文件,如监听套接字、读写套接字
tf = fdget(fd);
if (!tf.file)
goto error_fput;
再接下来,进行了一系列的数据验证,以保证用户传入的参数是合法的,比如epfd真的是一个epoll实例句柄,而不是一个普通文件描述符。
/* The target file descriptor must support poll */
//如果不支持poll,那么该文件描述字是无效的
error = -EPERM;
if (!tf.file->f_op->poll)
goto error_tgt_fput;
...
如果获得了一个真正的epoll实例句柄,就可以通过private_data获取之前创建的eventpoll实例了。
/*
* At this point it is safe to assume that the "private_data" contains
* our own data structure.
*/
ep = f.file->private_data;
接下来epoll_ctl通过目标文件和对应描述字,在红黑树中查找是否存在该套接字,这也是epoll为什么高效的地方。红黑树(RB-tree)是一种常见的数据结构,这里eventpoll通过红黑树跟踪了当前监听的所有文件描述字,而这棵树的根就保存在eventpoll数据结构中。
/* RB tree root used to store monitored fd structs */
struct rb_root_cached rbr;
对于每个被监听的文件描述字,都有一个对应的epitem与之对应,epitem作为红黑树中的节点就保存在红黑树中。
/*
* Try to lookup the file inside our RB tree, Since we grabbed "mtx"
* above, we can be sure to be able to use the item looked up by
* ep_find() till we release the mutex.
*/
epi = ep_find(ep, tf.file, fd);
红黑树是一棵二叉树,作为二叉树上的节点,epitem必须提供比较能力,以便可以按大小顺序构建出一棵有序的二叉树。其排序能力是依靠epoll_filefd结构体来完成的,epoll_filefd可以简单理解为需要监听的文件描述字,它对应到二叉树上的节点。
可以看到这个还是比较好理解的,按照文件的地址大小排序。如果两个相同,就按照文件文件描述字来排序。
struct epoll_filefd {
struct file *file; // pointer to the target file struct corresponding to the fd
int fd; // target file descriptor number
} __packed;
/* Compare RB tree keys */
static inline int ep_cmp_ffd(struct epoll_filefd *p1,
struct epoll_filefd *p2)
{
return (p1->file > p2->file ? +1:
(p1->file < p2->file ? -1 : p1->fd - p2->fd));
}
在进行完红黑树查找之后,如果发现是一个ADD操作,并且在树中没有找到对应的二叉树节点,就会调用ep_insert进行二叉树节点的增加。
case EPOLL_CTL_ADD:
if (!epi) {
epds.events |= POLLERR | POLLHUP;
error = ep_insert(ep, &epds, tf.file, fd, full_check);
} else
error = -EEXIST;
if (full_check)
clear_tfile_check_list();
break;
ep_insert首先判断当前监控的文件值是否超过了/proc/sys/fs/epoll/max_user_watches的预设最大值,如果超过了则直接返回错误。
user_watches = atomic_long_read(&ep->user->epoll_watches);
if (unlikely(user_watches >= max_user_watches))
return -ENOSPC;
接下来是分配资源和初始化动作。
if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
return -ENOMEM;
/* Item initialization follow here ... */
INIT_LIST_HEAD(&epi->rdllink);
INIT_LIST_HEAD(&epi->fllink);
INIT_LIST_HEAD(&epi->pwqlist);
epi->ep = ep;
ep_set_ffd(&epi->ffd, tfile, fd);
epi->event = *event;
epi->nwait = 0;
epi->next = EP_UNACTIVE_PTR;
再接下来的事情非常重要,ep_insert会为加入的每个文件描述字设置回调函数。这个回调函数是通过函数ep_ptable_queue_proc来进行设置的。这个回调函数是干什么的呢?其实,对应的文件描述字上如果有事件发生,就会调用这个函数,比如套接字缓冲区有数据了,就会回调这个函数。这个函数就是ep_poll_callback。这里你会发现,原来内核设计也是充满了事件回调的原理。
/*
* This is the callback that is used to add our wait queue to the
* target file wakeup lists.
*/
static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,poll_table *pt)
{
struct epitem *epi = ep_item_from_epqueue(pt);
struct eppoll_entry *pwq;
if (epi>nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
pwq->whead = whead;
pwq->base = epi;
if (epi->event.events & EPOLLEXCLUSIVE)
add_wait_queue_exclusive(whead, &pwq->wait);
else
add_wait_queue(whead, &pwq->wait);
list_add_tail(&pwq->llink, &epi->pwqlist);
epi->nwait++;
} else {
/* We have to signal that an error occurred */
epi->nwait = -1;
}
}
ep_poll_callback函数的作用非常重要,它将内核事件真正地和epoll对象联系了起来。它又是怎么实现的呢?
首先,通过这个文件的wait_queue_entry_t对象找到对应的epitem对象,因为eppoll_entry对象里保存了wait_queue_entry_t,根据wait_queue_entry_t这个对象的地址就可以简单计算出eppoll_entry对象的地址,从而可以获得epitem对象的地址。这部分工作在ep_item_from_wait函数中完成。一旦获得epitem对象,就可以寻迹找到eventpoll实例。
/*
* This is the callback that is passed to the wait queue wakeup
* mechanism. It is called by the stored file descriptors when they
* have events to report.
*/
static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
{
int pwake = 0;
unsigned long flags;
struct epitem *epi = ep_item_from_wait(wait);
struct eventpoll *ep = epi->ep;
接下来,进行一个加锁操作。
spin_lock_irqsave(&ep->lock, flags);
下面对发生的事件进行过滤,为什么需要过滤呢?为了性能考虑,ep_insert向对应监控文件注册的是所有的事件,而实际用户侧订阅的事件未必和内核事件对应。比如,用户向内核订阅了一个套接字的可读事件,在某个时刻套接字的可写事件发生时,并不需要向用户空间传递这个事件。
/*
* Check the events coming with the callback. At this stage, not
* every device reports the events in the "key" parameter of the
* callback. We need to be able to handle both cases here, hence the
* test for "key" != NULL before the event match test.
*/
if (key && !((unsigned long) key & epi->event.events))
goto out_unlock;
接下来,判断是否需要把该事件传递给用户空间。
if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
if (epi->next == EP_UNACTIVE_PTR) {
epi->next = ep->ovflist;
ep->ovflist = epi;
if (epi->ws) {
/*
* Activate ep->ws since epi->ws may get
* deactivated at any time.
*/
__pm_stay_awake(ep->ws);
}
}
goto out_unlock;
}
如果需要,而且该事件对应的event_item不在eventpoll对应的已完成队列中,就把它放入该队列,以便将该事件传递给用户空间。
/* If this file is already in the ready list we exit soon */
if (!ep_is_linked(&epi->rdllink)) {
list_add_tail(&epi->rdllink, &ep->rdllist);
ep_pm_stay_awake_rcu(epi);
}
我们知道,当我们调用epoll_wait的时候,调用进程被挂起,在内核看来调用进程陷入休眠。如果该epoll实例上对应描述字有事件发生,这个休眠进程应该被唤醒,以便及时处理事件。下面的代码就是起这个作用的,wake_up_locked函数唤醒当前eventpoll上的等待进程。
/*
* Wake up ( if active ) both the eventpoll wait list and the ->poll()
* wait list.
*/
if (waitqueue_active(&ep->wq)) {
if ((epi->event.events & EPOLLEXCLUSIVE) &&
!((unsigned long)key & POLLFREE)) {
switch ((unsigned long)key & EPOLLINOUT_BITS) {
case POLLIN:
if (epi->event.events & POLLIN)
ewake = 1;
break;
case POLLOUT:
if (epi->event.events & POLLOUT)
ewake = 1;
break;
case 0:
ewake = 1;
break;
}
}
wake_up_locked(&ep->wq);
}
epoll_wait函数首先进行一系列的检查,例如传入的maxevents应该大于0。
/* The maximum number of event must be greater than zero */
if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
return -EINVAL;
/* Verify that the area passed by the user is writeable */
if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
return -EFAULT;
和前面介绍的epoll_ctl一样,通过epoll实例找到对应的匿名文件和描述字,并且进行检查和验证。
/* Get the "struct file *" for the eventpoll file */
f = fdget(epfd);
if (!f.file)
return -EBADF;
/*
* We have to check that the file structure underneath the fd
* the user passed to us _is_ an eventpoll file.
*/
error = -EINVAL;
if (!is_file_epoll(f.file))
goto error_fput;
还是通过读取epoll实例对应匿名文件的private_data得到eventpoll实例。
/*
* At this point it is safe to assume that the "private_data" contains
* our own data structure.
*/
ep = f.file->private_data;
接下来调用ep_poll来完成对应的事件收集并传递到用户空间。
/* Time to fish for events ... */
error = ep_poll(ep, events, maxevents, timeout);
还记得第23讲里介绍epoll函数的时候,对应的timeout值可以是大于0,等于0和小于0么?这里ep_poll就分别对timeout不同值的场景进行了处理。如果大于0则产生了一个超时时间,如果等于0则立即检查是否有事件发生。
*/
static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,int maxevents, long timeout)
{
int res = 0, eavail, timed_out = 0;
unsigned long flags;
u64 slack = 0;
wait_queue_entry_t wait;
ktime_t expires, *to = NULL;
if (timeout > 0) {
struct timespec64 end_time = ep_set_mstimeout(timeout);
slack = select_estimate_accuracy(&end_time);
to = &expires;
*to = timespec64_to_ktime(end_time);
} else if (timeout == 0) {
/*
* Avoid the unnecessary trip to the wait queue loop, if the
* caller specified a non blocking operation.
*/
timed_out = 1;
spin_lock_irqsave(&ep->lock, flags);
goto check_events;
}
接下来尝试获得eventpoll上的锁:
spin_lock_irqsave(&ep->lock, flags);
获得这把锁之后,检查当前是否有事件发生,如果没有,就把当前进程加入到eventpoll的等待队列wq中,这样做的目的是当事件发生时,ep_poll_callback函数可以把该等待进程唤醒。
if (!ep_events_available(ep)) {
/*
* Busy poll timed out. Drop NAPI ID for now, we can add
* it back in when we have moved a socket with a valid NAPI
* ID onto the ready list.
*/
ep_reset_busy_poll_napi_id(ep);
/*
* We don't have any available event to return to the caller.
* We need to sleep here, and we will be wake up by
* ep_poll_callback() when events will become available.
*/
init_waitqueue_entry(&wait, current);
__add_wait_queue_exclusive(&ep->wq, &wait);
紧接着是一个无限循环, 这个循环中通过调用schedule_hrtimeout_range,将当前进程陷入休眠,CPU时间被调度器调度给其他进程使用,当然,当前进程可能会被唤醒,唤醒的条件包括有以下四种:
对应的1、2、3都会通过break跳出循环,直接返回。
//这个循环里,当前进程可能会被唤醒,唤醒的途径包括
//1.当前进程超时
//2.当前进行收到一个signal信号
//3.某个描述字上有事件发生
//对应的1.2.3都会通过break跳出循环
//第4个可能是当前进程被CPU重新调度,进入for循环的判断,如果没有满足1.2.3的条件,就又重新进入休眠
for (;;) {
/*
* We don't want to sleep if the ep_poll_callback() sends us
* a wakeup in between. That's why we set the task state
* to TASK_INTERRUPTIBLE before doing the checks.
*/
set_current_state(TASK_INTERRUPTIBLE);
/*
* Always short-circuit for fatal signals to allow
* threads to make a timely exit without the chance of
* finding more events available and fetching
* repeatedly.
*/
if (fatal_signal_pending(current)) {
res = -EINTR;
break;
}
if (ep_events_available(ep) || timed_out)
break;
if (signal_pending(current)) {
res = -EINTR;
break;
}
spin_unlock_irqrestore(&ep->lock, flags);
//通过调用schedule_hrtimeout_range,当前进程进入休眠,CPU时间被调度器调度给其他进程使用
if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
timed_out = 1;
spin_lock_irqsave(&ep->lock, flags);
}
如果进程从休眠中返回,则将当前进程从eventpoll的等待队列中删除,并且设置当前进程为TASK_RUNNING状态。
//从休眠中结束,将当前进程从wait队列中删除,设置状态为TASK_RUNNING,接下来进入check_events,来判断是否是有事件发生
__remove_wait_queue(&ep->wq, &wait);
__set_current_state(TASK_RUNNING);
最后,调用ep_send_events将事件拷贝到用户空间。
//ep_send_events将事件拷贝到用户空间
/*
* Try to transfer events to user space. In case we get 0 events and
* there's still timeout left over, we go trying again in search of
* more luck.
*/
if (!res && eavail &&
!(res = ep_send_events(ep, events, maxevents)) && !timed_out)
goto fetch_events;
return res;
ep_send_events这个函数会将ep_send_events_proc作为回调函数并调用ep_scan_ready_list函数,ep_scan_ready_list函数调用ep_send_events_proc对每个已经就绪的事件循环处理。
ep_send_events_proc循环处理就绪事件时,会再次调用每个文件描述符的poll方法,以便确定确实有事件发生。为什么这样做呢?这是为了确定注册的事件在这个时刻还是有效的。
可以看到,尽管ep_send_events_proc已经尽可能的考虑周全,使得用户空间获得的事件通知都是真实有效的,但还是有一定的概率,当ep_send_events_proc再次调用文件上的poll函数之后,用户空间获得的事件通知已经不再有效,这可能是用户空间已经处理掉了,或者其他什么情形。还记得第22讲吗,在这种情况下,如果套接字不是非阻塞的,整个进程将会被阻塞,这也是为什么将非阻塞套接字配合epoll使用作为最佳实践的原因。
在进行简单的事件掩码校验之后,ep_send_events_proc将事件结构体拷贝到用户空间需要的数据结构中。这是通过__put_user方法完成的。
//这里对一个fd再次进行poll操作,以确认事件
revents = ep_item_poll(epi, &pt);
/*
* If the event mask intersect the caller-requested one,
* deliver the event to userspace. Again, ep_scan_ready_list()
* is holding "mtx", so no operations coming from userspace
* can change the item.
*/
if (revents) {
if (__put_user(revents, &uevent->events) ||
__put_user(epi->event.data, &uevent->data)) {
list_add(&epi->rdllink, head);
ep_pm_stay_awake(epi);
return eventcnt ? eventcnt : -EFAULT;
}
eventcnt++;
uevent++;
在前面的文章里,我们一直都在强调level-triggered和edge-triggered之间的区别。
从实现角度来看其实非常简单,在ep_send_events_proc函数的最后,针对level-triggered情况,当前的epoll_item对象被重新加到eventpoll的就绪列表中,这样在下一次epoll_wait调用时,这些epoll_item对象就会被重新处理。
在前面我们提到,在最终拷贝到用户空间有效事件列表中之前,会调用对应文件的poll方法,以确定这个事件是不是依然有效。所以,如果用户空间程序已经处理掉该事件,就不会被再次通知;如果没有处理,意味着该事件依然有效,就会被再次通知。
//这里是Level-triggered的处理,可以看到,在Level-triggered的情况下,这个事件被重新加回到ready list里面
//这样,下一轮epoll_wait的时候,这个事件会被重新check
else if (!(epi->event.events & EPOLLET)) {
/*
* If this file has been added with Level
* Trigger mode, we need to insert back inside
* the ready list, so that the next call to
* epoll_wait() will check again the events
* availability. At this point, no one can insert
* into ep->rdllist besides us. The epoll_ctl()
* callers are locked out by
* ep_scan_ready_list() holding "mtx" and the
* poll callback will queue them in ep->ovflist.
*/
list_add_tail(&epi->rdllink, &ep->rdllist);
ep_pm_stay_awake(epi);
}
最后,我们从实现角度来说明一下为什么epoll的效率要远远高于poll/select。
首先,poll/select先将要监听的fd从用户空间拷贝到内核空间, 然后在内核空间里面进行处理之后,再拷贝给用户空间。这里就涉及到内核空间申请内存,释放内存等等过程,这在大量fd情况下,是非常耗时的。而epoll维护了一个红黑树,通过对这棵黑红树进行操作,可以避免大量的内存申请和释放的操作,而且查找速度非常快。
下面的代码就是poll/select在内核空间申请内存的展示。可以看到select 是先尝试申请栈上资源, 如果需要监听的fd比较多, 就会去申请堆空间的资源。
int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp,
fd_set __user *exp, struct timespec64 *end_time)
{
fd_set_bits fds;
void *bits;
int ret, max_fds;
size_t size, alloc_size;
struct fdtable *fdt;
/* Allocate small arguments on the stack to save memory and be faster */
long stack_fds[SELECT_STACK_ALLOC/sizeof(long)];
ret = -EINVAL;
if (n < 0)
goto out_nofds;
/* max_fds can increase, so grab it once to avoid race */
rcu_read_lock();
fdt = files_fdtable(current->files);
max_fds = fdt->max_fds;
rcu_read_unlock();
if (n > max_fds)
n = max_fds;
/*
* We need 6 bitmaps (in/out/ex for both incoming and outgoing),
* since we used fdset we need to allocate memory in units of
* long-words.
*/
size = FDS_BYTES(n);
bits = stack_fds;
if (size > sizeof(stack_fds) / 6) {
/* Not enough space in on-stack array; must use kmalloc */
ret = -ENOMEM;
if (size > (SIZE_MAX / 6))
goto out_nofds;
alloc_size = 6 * size;
bits = kvmalloc(alloc_size, GFP_KERNEL);
if (!bits)
goto out_nofds;
}
fds.in = bits;
fds.out = bits + size;
fds.ex = bits + 2*size;
fds.res_in = bits + 3*size;
fds.res_out = bits + 4*size;
fds.res_ex = bits + 5*size;
...
第二,select/poll从休眠中被唤醒时,如果监听多个fd,只要其中有一个fd有事件发生,内核就会遍历内部的list去检查到底是哪一个事件到达,并没有像epoll一样, 通过fd直接关联eventpoll对象,快速地把fd直接加入到eventpoll的就绪列表中。
static int do_select(int n, fd_set_bits *fds, struct timespec64 *end_time)
{
...
retval = 0;
for (;;) {
unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp;
bool can_busy_loop = false;
inp = fds->in; outp = fds->out; exp = fds->ex;
rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex;
for (i = 0; i < n; ++rinp, ++routp, ++rexp) {
unsigned long in, out, ex, all_bits, bit = 1, mask, j;
unsigned long res_in = 0, res_out = 0, res_ex = 0;
in = *inp++; out = *outp++; ex = *exp++;
all_bits = in | out | ex;
if (all_bits == 0) {
i += BITS_PER_LONG;
continue;
}
if (!poll_schedule_timeout(&table, TASK_INTERRUPTIBLE,
to, slack))
timed_out = 1;
...
在这次答疑中,我希望通过深度分析epoll的源码实现,帮你理解epoll的实现原理。
epoll维护了一棵红黑树来跟踪所有待检测的文件描述字,黑红树的使用减少了内核和用户空间大量的数据拷贝和内存分配,大大提高了性能。
同时,epoll维护了一个链表来记录就绪事件,内核在每个文件有事件发生时将自己登记到这个就绪事件列表中,通过内核自身的文件file-eventpoll之间的回调和唤醒机制,减少了对内核描述字的遍历,大大加速了事件通知和检测的效率,这也为level-triggered和edge-triggered的实现带来了便利。
通过对比poll/select的实现,我们发现epoll确实克服了poll/select的种种弊端,不愧是Linux下高性能网络编程的皇冠。我们应该感谢Linux社区的大神们设计了这么强大的事件分发机制,让我们在Linux下可以享受高性能网络服务器带来的种种技术红利。