在第25节、第26节中,我们讲了如何对一个性能计数器框架进行分析、设计与实现,并且实践了之前学过的一些设计原则和设计思想。当时我们提到,小步快跑、逐步迭代是一种非常实用的开发模式。所以,针对这个框架的开发,我们分多个版本来逐步完善。
在第25、26节课中,我们实现了框架的第一个版本,它只包含最基本的一些功能,在设计与实现上还有很多不足。所以,接下来,我会针对这些不足,继续迭代开发两个版本:版本2和版本3,分别对应第39节和第40节的内容。
在版本2中,我们会利用之前学过的重构方法,对版本1的设计与实现进行重构,解决版本1存在的设计问题,让它满足之前学过的设计原则、思想、编程规范。在版本3中,我们再对版本2进行迭代,并且完善框架的功能和非功能需求,让其满足第25节课中罗列的所有需求。
话不多说,让我们正式开始版本2的设计与实现吧!
首先,让我们一块回顾一下版本1的设计与实现。当然,如果时间充足,你最好能再重新看一下第25、26节的内容。在版本1中,整个框架的代码被划分为下面这几个类。
MetricCollector、MetricsStorage、RedisMetricsStorage的设计与实现比较简单,不是版本2重构的重点。今天,我们重点来看一下Aggregator和ConsoleReporter、EmailReporter这几个类。
我们先来看一下Aggregator类存在的问题。
Aggregator类里面只有一个静态函数,有50行左右的代码量,负责各种统计数据的计算。当要添加新的统计功能的时候,我们需要修改aggregate()函数代码。一旦越来越多的统计功能添加进来之后,这个函数的代码量会持续增加,可读性、可维护性就变差了。因此,我们需要在版本2中对其进行重构。
public class Aggregator {
public static RequestStat aggregate(List<RequestInfo> requestInfos, long durationInMillis) {
double maxRespTime = Double.MIN_VALUE;
double minRespTime = Double.MAX_VALUE;
double avgRespTime = -1;
double p999RespTime = -1;
double p99RespTime = -1;
double sumRespTime = 0;
long count = 0;
for (RequestInfo requestInfo : requestInfos) {
++count;
double respTime = requestInfo.getResponseTime();
if (maxRespTime < respTime) {
maxRespTime = respTime;
}
if (minRespTime > respTime) {
minRespTime = respTime;
}
sumRespTime += respTime;
}
if (count != 0) {
avgRespTime = sumRespTime / count;
}
long tps = (long)(count / durationInMillis * 1000);
Collections.sort(requestInfos, new Comparator<RequestInfo>() {
@Override
public int compare(RequestInfo o1, RequestInfo o2) {
double diff = o1.getResponseTime() - o2.getResponseTime();
if (diff < 0.0) {
return -1;
} else if (diff > 0.0) {
return 1;
} else {
return 0;
}
}
});
if (count != 0) {
int idx999 = (int)(count * 0.999);
int idx99 = (int)(count * 0.99);
p999RespTime = requestInfos.get(idx999).getResponseTime();
p99RespTime = requestInfos.get(idx99).getResponseTime();
}
RequestStat requestStat = new RequestStat();
requestStat.setMaxResponseTime(maxRespTime);
requestStat.setMinResponseTime(minRespTime);
requestStat.setAvgResponseTime(avgRespTime);
requestStat.setP999ResponseTime(p999RespTime);
requestStat.setP99ResponseTime(p99RespTime);
requestStat.setCount(count);
requestStat.setTps(tps);
return requestStat;
}
}
public class RequestStat {
private double maxResponseTime;
private double minResponseTime;
private double avgResponseTime;
private double p999ResponseTime;
private double p99ResponseTime;
private long count;
private long tps;
//...省略getter/setter方法...
}
我们再来看一下ConsoleReporter和EmailReporter这两个类存在的问题。
ConsoleReporter和EmailReporter两个类中存在代码重复问题。在这两个类中,从数据库中取数据、做统计的逻辑都是相同的,可以抽取出来复用,否则就违反了DRY原则。
整个类负责的事情比较多,不相干的逻辑糅合在里面,职责不够单一。特别是显示部分的代码可能会比较复杂(比如Email的显示方式),最好能将这部分显示逻辑剥离出来,设计成一个独立的类。
除此之外,因为代码中涉及线程操作,并且调用了Aggregator的静态函数,所以代码的可测试性也有待提高。
public class ConsoleReporter {
private MetricsStorage metricsStorage;
private ScheduledExecutorService executor;
public ConsoleReporter(MetricsStorage metricsStorage) {
this.metricsStorage = metricsStorage;
this.executor = Executors.newSingleThreadScheduledExecutor();
}
public void startRepeatedReport(long periodInSeconds, long durationInSeconds) {
executor.scheduleAtFixedRate(new Runnable() {
@Override
public void run() {
long durationInMillis = durationInSeconds * 1000;
long endTimeInMillis = System.currentTimeMillis();
long startTimeInMillis = endTimeInMillis - durationInMillis;
Map<String, List<RequestInfo>> requestInfos =
metricsStorage.getRequestInfos(startTimeInMillis, endTimeInMillis);
Map<String, RequestStat> stats = new HashMap<>();
for (Map.Entry<String, List<RequestInfo>> entry : requestInfos.entrySet()) {
String apiName = entry.getKey();
List<RequestInfo> requestInfosPerApi = entry.getValue();
RequestStat requestStat = Aggregator.aggregate(requestInfosPerApi, durationInMillis);
stats.put(apiName, requestStat);
}
System.out.println("Time Span: [" + startTimeInMillis + ", " + endTimeInMillis + "]");
Gson gson = new Gson();
System.out.println(gson.toJson(stats));
}
}, 0, periodInSeconds, TimeUnit.SECONDS);
}
}
public class EmailReporter {
private static final Long DAY_HOURS_IN_SECONDS = 86400L;
private MetricsStorage metricsStorage;
private EmailSender emailSender;
private List<String> toAddresses = new ArrayList<>();
public EmailReporter(MetricsStorage metricsStorage) {
this(metricsStorage, new EmailSender(/*省略参数*/));
}
public EmailReporter(MetricsStorage metricsStorage, EmailSender emailSender) {
this.metricsStorage = metricsStorage;
this.emailSender = emailSender;
}
public void addToAddress(String address) {
toAddresses.add(address);
}
public void startDailyReport() {
Calendar calendar = Calendar.getInstance();
calendar.add(Calendar.DATE, 1);
calendar.set(Calendar.HOUR_OF_DAY, 0);
calendar.set(Calendar.MINUTE, 0);
calendar.set(Calendar.SECOND, 0);
calendar.set(Calendar.MILLISECOND, 0);
Date firstTime = calendar.getTime();
Timer timer = new Timer();
timer.schedule(new TimerTask() {
@Override
public void run() {
long durationInMillis = DAY_HOURS_IN_SECONDS * 1000;
long endTimeInMillis = System.currentTimeMillis();
long startTimeInMillis = endTimeInMillis - durationInMillis;
Map<String, List<RequestInfo>> requestInfos =
metricsStorage.getRequestInfos(startTimeInMillis, endTimeInMillis);
Map<String, RequestStat> stats = new HashMap<>();
for (Map.Entry<String, List<RequestInfo>> entry : requestInfos.entrySet()) {
String apiName = entry.getKey();
List<RequestInfo> requestInfosPerApi = entry.getValue();
RequestStat requestStat = Aggregator.aggregate(requestInfosPerApi, durationInMillis);
stats.put(apiName, requestStat);
}
// TODO: 格式化为html格式,并且发送邮件
}
}, firstTime, DAY_HOURS_IN_SECONDS * 1000);
}
}
Aggregator类和ConsoleReporter、EmailReporter类主要负责统计显示的工作。在第26节中,我们提到,如果我们把统计显示所要完成的功能逻辑细分一下,主要包含下面4点:
之前的划分方法是将所有的逻辑都放到ConsoleReporter和EmailReporter这两个上帝类中,而Aggregator只是一个包含静态方法的工具类。这样的划分方法存在前面提到的一些问题,我们需要对其进行重新划分。
面向对象设计中的最后一步是组装类并提供执行入口,所以,组装前三部分逻辑的上帝类是必须要有的。我们可以将上帝类做的很轻量级,把核心逻辑都剥离出去,形成独立的类,上帝类只负责组装类和串联执行流程。这样做的好处是,代码结构更加清晰,底层核心逻辑更容易被复用。按照这个设计思路,具体的重构工作包含以下4个方面。
public class Aggregator {
public Map<String, RequestStat> aggregate(
Map<String, List<RequestInfo>> requestInfos, long durationInMillis) {
Map<String, RequestStat> requestStats = new HashMap<>();
for (Map.Entry<String, List<RequestInfo>> entry : requestInfos.entrySet()) {
String apiName = entry.getKey();
List<RequestInfo> requestInfosPerApi = entry.getValue();
RequestStat requestStat = doAggregate(requestInfosPerApi, durationInMillis);
requestStats.put(apiName, requestStat);
}
return requestStats;
}
private RequestStat doAggregate(List<RequestInfo> requestInfos, long durationInMillis) {
List<Double> respTimes = new ArrayList<>();
for (RequestInfo requestInfo : requestInfos) {
double respTime = requestInfo.getResponseTime();
respTimes.add(respTime);
}
RequestStat requestStat = new RequestStat();
requestStat.setMaxResponseTime(max(respTimes));
requestStat.setMinResponseTime(min(respTimes));
requestStat.setAvgResponseTime(avg(respTimes));
requestStat.setP999ResponseTime(percentile999(respTimes));
requestStat.setP99ResponseTime(percentile99(respTimes));
requestStat.setCount(respTimes.size());
requestStat.setTps((long) tps(respTimes.size(), durationInMillis/1000));
return requestStat;
}
// 以下的函数的代码实现均省略...
private double max(List<Double> dataset) {}
private double min(List<Double> dataset) {}
private double avg(List<Double> dataset) {}
private double tps(int count, double duration) {}
private double percentile999(List<Double> dataset) {}
private double percentile99(List<Double> dataset) {}
private double percentile(List<Double> dataset, double ratio) {}
}
public interface StatViewer {
void output(Map<String, RequestStat> requestStats, long startTimeInMillis, long endTimeInMills);
}
public class ConsoleViewer implements StatViewer {
public void output(
Map<String, RequestStat> requestStats, long startTimeInMillis, long endTimeInMills) {
System.out.println("Time Span: [" + startTimeInMillis + ", " + endTimeInMills + "]");
Gson gson = new Gson();
System.out.println(gson.toJson(requestStats));
}
}
public class EmailViewer implements StatViewer {
private EmailSender emailSender;
private List<String> toAddresses = new ArrayList<>();
public EmailViewer() {
this.emailSender = new EmailSender(/*省略参数*/);
}
public EmailViewer(EmailSender emailSender) {
this.emailSender = emailSender;
}
public void addToAddress(String address) {
toAddresses.add(address);
}
public void output(
Map<String, RequestStat> requestStats, long startTimeInMillis, long endTimeInMills) {
// format the requestStats to HTML style.
// send it to email toAddresses.
}
}
public class ConsoleReporter {
private MetricsStorage metricsStorage;
private Aggregator aggregator;
private StatViewer viewer;
private ScheduledExecutorService executor;
public ConsoleReporter(MetricsStorage metricsStorage, Aggregator aggregator, StatViewer viewer) {
this.metricsStorage = metricsStorage;
this.aggregator = aggregator;
this.viewer = viewer;
this.executor = Executors.newSingleThreadScheduledExecutor();
}
public void startRepeatedReport(long periodInSeconds, long durationInSeconds) {
executor.scheduleAtFixedRate(new Runnable() {
@Override
public void run() {
long durationInMillis = durationInSeconds * 1000;
long endTimeInMillis = System.currentTimeMillis();
long startTimeInMillis = endTimeInMillis - durationInMillis;
Map<String, List<RequestInfo>> requestInfos =
metricsStorage.getRequestInfos(startTimeInMillis, endTimeInMillis);
Map<String, RequestStat> requestStats = aggregator.aggregate(requestInfos, durationInMillis);
viewer.output(requestStats, startTimeInMillis, endTimeInMillis);
}
}, 0L, periodInSeconds, TimeUnit.SECONDS);
}
}
public class EmailReporter {
private static final Long DAY_HOURS_IN_SECONDS = 86400L;
private MetricsStorage metricsStorage;
private Aggregator aggregator;
private StatViewer viewer;
public EmailReporter(MetricsStorage metricsStorage, Aggregator aggregator, StatViewer viewer) {
this.metricsStorage = metricsStorage;
this.aggregator = aggregator;
this.viewer = viewer;
}
public void startDailyReport() {
Calendar calendar = Calendar.getInstance();
calendar.add(Calendar.DATE, 1);
calendar.set(Calendar.HOUR_OF_DAY, 0);
calendar.set(Calendar.MINUTE, 0);
calendar.set(Calendar.SECOND, 0);
calendar.set(Calendar.MILLISECOND, 0);
Date firstTime = calendar.getTime();
Timer timer = new Timer();
timer.schedule(new TimerTask() {
@Override
public void run() {
long durationInMillis = DAY_HOURS_IN_SECONDS * 1000;
long endTimeInMillis = System.currentTimeMillis();
long startTimeInMillis = endTimeInMillis - durationInMillis;
Map<String, List<RequestInfo>> requestInfos =
metricsStorage.getRequestInfos(startTimeInMillis, endTimeInMillis);
Map<String, RequestStat> stats = aggregator.aggregate(requestInfos, durationInMillis);
viewer.output(stats, startTimeInMillis, endTimeInMillis);
}
}, firstTime, DAY_HOURS_IN_SECONDS * 1000);
}
}
经过上面的重构之后,我们现在再来看一下,现在框架该如何来使用。
我们需要在应用启动的时候,创建好ConsoleReporter对象,并且调用它的startRepeatedReport()函数,来启动定时统计并输出数据到终端。同理,我们还需要创建好EmailReporter对象,并且调用它的startDailyReport()函数,来启动每日统计并输出数据到制定邮件地址。我们通过MetricsCollector类来收集接口的访问情况,这部分收集代码会跟业务逻辑代码耦合在一起,或者统一放到类似Spring AOP的切面中完成。具体的使用代码示例如下:
public class PerfCounterTest {
public static void main(String[] args) {
MetricsStorage storage = new RedisMetricsStorage();
Aggregator aggregator = new Aggregator();
// 定时触发统计并将结果显示到终端
ConsoleViewer consoleViewer = new ConsoleViewer();
ConsoleReporter consoleReporter = new ConsoleReporter(storage, aggregator, consoleViewer);
consoleReporter.startRepeatedReport(60, 60);
// 定时触发统计并将结果输出到邮件
EmailViewer emailViewer = new EmailViewer();
emailViewer.addToAddress("wangzheng@xzg.com");
EmailReporter emailReporter = new EmailReporter(storage, aggregator, emailViewer);
emailReporter.startDailyReport();
// 收集接口访问数据
MetricsCollector collector = new MetricsCollector(storage);
collector.recordRequest(new RequestInfo("register", 123, 10234));
collector.recordRequest(new RequestInfo("register", 223, 11234));
collector.recordRequest(new RequestInfo("register", 323, 12334));
collector.recordRequest(new RequestInfo("login", 23, 12434));
collector.recordRequest(new RequestInfo("login", 1223, 14234));
try {
Thread.sleep(100000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
现在,我们Review一下,针对版本1重构之后,版本2的设计与实现。
重构之后,MetricsStorage负责存储,Aggregator负责统计,StatViewer(ConsoleViewer、EmailViewer)负责显示,三个类各司其职。ConsoleReporter和EmailReporter负责组装这三个类,将获取原始数据、聚合统计、显示统计结果到终端这三个阶段的工作串联起来,定时触发执行。
除此之外,MetricsStorage、Aggregator、StatViewer三个类的设计也符合迪米特法则。它们只与跟自己有直接相关的数据进行交互。MetricsStorage输出的是RequestInfo相关数据。Aggregator类输入的是RequestInfo数据,输出的是RequestStat数据。StatViewer输入的是RequestStat数据。
针对版本1和版本2,我画了一张它们的类之间依赖关系的对比图,如下所示。从图中,我们可以看出,重构之后的代码结构更加清晰、有条理。这也印证了之前提到的:面向对象设计和实现要做的事情,就是把合适的代码放到合适的类中。
刚刚我们分析了代码的整体结构和依赖关系,我们现在再来具体看每个类的设计。
Aggregator类从一个只包含一个静态函数的工具类,变成了一个普通的聚合统计类。现在,我们可以通过依赖注入的方式,将其组装进ConsoleReporter和EmailReporter类中,这样就更加容易编写单元测试。
Aggregator类在重构前,所有的逻辑都集中在aggregate()函数内,代码行数较多,代码的可读性和可维护性较差。在重构之后,我们将每个统计逻辑拆分成独立的函数,aggregate()函数变得比较单薄,可读性提高了。尽管我们要添加新的统计功能,还是要修改aggregate()函数,但现在的aggregate()函数代码行数很少,结构非常清晰,修改起来更加容易,可维护性提高。
目前来看,Aggregator的设计还算合理。但是,如果随着更多的统计功能的加入,Aggregator类的代码会越来越多。这个时候,我们可以将统计函数剥离出来,设计成独立的类,以解决Aggregator类的无限膨胀问题。不过,暂时来说没有必要这么做,毕竟将每个统计函数独立成类,会增加类的个数,也会影响到代码的可读性和可维护性。
ConsoleReporter和EmailReporter经过重构之后,代码的重复问题变小了,但仍然没有完全解决。尽管这两个类不再调用Aggregator的静态方法,但因为涉及多线程和时间相关的计算,代码的测试性仍然不够好。这两个问题我们留在下一节课中解决,你也可以留言说说的你解决方案。
好了,今天的内容到此就讲完了。我们一块来总结回顾一下,你需要掌握的重点内容。
面向对象设计中的最后一步是组装类并提供执行入口,也就是上帝类要做的事情。这个上帝类是没办法去掉的,但我们可以将上帝类做得很轻量级,把核心逻辑都剥离出去,下沉形成独立的类。上帝类只负责组装类和串联执行流程。这样做的好处是,代码结构更加清晰,底层核心逻辑更容易被复用。
面向对象设计和实现要做的事情,就是把合适的代码放到合适的类中。当我们要实现某个功能的时候,不管如何设计,所需要编写的代码量基本上是一样的,唯一的区别就是如何将这些代码划分到不同的类中。不同的人有不同的划分方法,对应得到的代码结构(比如类与类之间交互等)也不尽相同。
好的设计一定是结构清晰、有条理、逻辑性强,看起来一目了然,读完之后常常有一种原来如此的感觉。差的设计往往逻辑、代码乱塞一通,没有什么设计思路可言,看起来莫名其妙,读完之后一头雾水。
欢迎在留言区写下你的思考和想法,和同学一起交流和分享。如果有收获,也欢迎你把这篇文章分享给你的朋友。
评论