你好!我是郑晔。
上一讲,我们学习了如何看接口,今天我们进入第三个部分——看实现。在一个系统中,模型和接口是相对稳定的部分。但是,同样的模型和接口,如果采用不同的实现,稳定性、可扩展性和性能等诸多方面相差极大。而且,只有了解实现,你才有改动代码的基础。
但是,不得不说,“看实现”是一个很大的挑战,因为有无数的细节在那里等着你。所以,在很多团队里,一个新人甚至会用长达几个月的时间去熟悉代码中的这些细节。
面对这种情况,我们该怎么办呢?
首先,你要记住一件事,你不太可能记住真实项目的所有细节,甚至到你离开项目的那一天,你依然会有很多细节不知道,可这并不妨碍你的工作。但是,如果你心中没有一份关于项目实现的地图,你就一定会迷失。
像我前面所说的新人,他们用几个月的时间熟悉代码,就是在通过代码一点点展开地图,但是,这不仅极其浪费时间,也很难形成一个整体认知。所以我建议,你应该直接把地图展开。怎么展开呢?你需要找到两个关键点:软件的结构和关键的技术。
可能你还不太理解我的意思,下面我就以开源软件Kafka为例,给你讲一下如何把地图展开,去看一个软件的实现。按照我们之前讲过的思路,了解一个软件设计的步骤是“先模型,再接口,最后看实现”。所以,我们要先了解Kafka的模型和接口。
Kafka是这么自我介绍的:Kafka是一个分布式流平台。这是它现在的发展方向,但在更多人的心目中,Kafka的角色是一个消息队列。可以说,消息队列是Kafka这个软件的核心模型,而流平台显然是这个核心模型存在之后的扩展。所以,我们要先把焦点放在Kafka的核心模型——消息队列上。
简单地说, 消息队列(Messaging Queue)是一种进程间通信的方式,发消息的一方(也就是生产者)将消息发给消息队列,收消息的一方(也就是消费者)将队列中的消息取出并进行处理。
站在看模型的角度上,消息队列是很简单的,无非是生产者发消息,消费者消费消息。而且消息队列通常还会有一个topic的概念,用以区分发给不同目标的消息。
消息队列的基本接口也很简单。以Kafka为例,生产者是这样发消息的:
producer.send(new KafkaRecord<>("topic", new Message()));
而消费者收消息是这样的:
ConsumerRecords<String, Message> records = consumer.poll(1000);
有了对模型和接口的基本了解,我们会发现,消息队列本身并不难。
但我们都知道,消息队列的实现有很多,Kafka只是其中一种,还有诸如ActiveMQ、RabbitMQ等的实现。为什么会有这么多不同的消息队列实现呢?因为每个消息队列的实现都会有所侧重,不同的消息队列有其适用的场景。
消息队列还有一个最常见的特性是,它会提供一定的消息存储能力。这样的话,当生产者发消息的速度快于消费者处理消息的速度时,消息队列可以起到一定的缓冲作用。所以,有一些系统会利用消息队列的这个特性做“削峰填谷”,也就是在消息量特别大时,先把消息收下来,慢慢处理,以减小系统的压力。
Kafka之所以能从一众消息队列实现中脱颖而出,一个重要的原因就是,它针对消息写入做了优化,它的生产者写入速度特别快。从整体的表现上看,就是吞吐能力特别强。
好,我们已经对Kafka的能力有了一个初步的认识。显然,介绍接口和模型不足以将它与其他消息队列实现区分开来。所以,我们必须拉开大幕,开始去了解它的实现。
前面我提到,当我们想去看一个软件的实现时,有两件事特别重要:软件的结构和关键的技术。
我们先来看软件的结构。软件的结构其实也是软件的模型,只不过,它不是整体上的模型,而是展开实现细节之后的模型。我在第1讲也说过,模型是分层的。
对于每个软件来说,当你从整体的角度去了解它的时候,它是完整的一块。但当你打开它的时候,它就变成了多个模块的组合,这也是所谓“分层”的意义所在。而上一层只要使用下一层提供给它的接口就好。
所以,当我们打开了一个层次,了解它的实现时,也要先从大处着手。最好的办法就是我们能够找到一张结构图,准确地了解它的结构。
如果你能够找到这样一张图,你还是很幸运的。因为在真实的项目中,你可能会碰到各种可能性:
无论遇到上述的哪种情况,你了解项目都不会很顺利。所以,你还是要先了解模型和接口,因为它们永远是你的主线,可以帮你从混乱的局面中走出来。
那么,假设现在你有了一张结构图,在我们继续前进之前,我想先问一个问题:现在你有了一张结构图,你打算做什么?你可能会问,难道不是了解它的结构吗?是,但不够。我们不仅要知道一个设计的结果,最好还要推断出设计的动因。
所以,一种更好的做法是,带着问题上路。我们不妨假设自己就是这个软件的设计者,问问自己要怎么做。然后再去对比别人的设计,你就会发现,自己的想法和别人想法的相同或不同之处。对于理解Kafka而言,第一个问题就是如果你来设计一个消息队列,你会怎么做呢?
如果在网上搜索Kafka的架构图,你会搜到各种各样的图,上面包含了不同的信息。有的告诉你分区(Partition)的概念,有的告诉你Zookeeper。根据前面对模型的介绍,我特意挑了一张看上去最简单的架构图,因为它最贴近消息队列的基础模型:
那么,从这个图中,你能看到什么呢?你能看到,Kafka的生产者一端将消息发送给Kafka集群,然后,消费者一端将消息取出来进行处理。这样的结构和你想的是不是一样的呢?如果让你负责进一步设计,你会怎么做呢?
然后,你就可以问自己更多的问题:
你有了更多的问题之后,你就会在代码里进行更深入地探索。你可以根据需要,打开对应模块,进一步了解里面的实现。比如,消息重发的问题,你就可以看看生产端是怎么解决这些问题的。当问题细化到具体实现时,我们就可以打开对应的源码,去里面寻找答案。
从结构上来说,Kafka不是一个特别复杂的系统。所以,如果你的项目更复杂,层次更多,我建议你把各个层次逐一展开,先把整体结构放在心中,再去做细节的探索。
我们再来看看理解实现的另一个重要方面:关键技术。
什么算是关键技术呢?就是能够让这个软件的“实现”与众不同的地方。了解关键技术可以保证一点,就是我们对代码的调整不会使项目出现明显的劣化。幸运的是,大多数项目都会愿意把自己的关键技术讲出来,所以,找到这些信息并不难。
以Kafka为例,前面说过,它针对写入做了优化,使得它的整体吞吐能力特别强。那它是怎么做到的呢?
消息队列实现消息存储的方式通常是把它写入到磁盘中,而Kafka的不同之处在于,它利用了磁盘顺序读写的特性。对于普通的机械硬盘而言,如果是随机写,需要按照机械硬盘的方式去寻址,然后磁头做机械运动,写入速度就会慢得多。但顺序写的话,会大幅度减少磁头的运动,效率自然就得到了大幅度的提高。
之所以可以这样实现,是充分利用了消息队列本身的特性:有序。它是技术实现与需求完美结合的产物。有了这个基础,就可以有进一步的优化。比如,利用内存映射文件减少用户空间到内核空间复制的开销。
如果站在了解实现的角度,你会觉得非常地自然。但要想从设计的角度学到更多,我们还是应该带着问题上路,多问自己一个问题,为什么其他的消息队列之前不这么做呢?这是一个值得深思的问题。Kafka这个实现到底是哪里不容易想到呢?答案是软硬结合。
之前的消息队列实现也会把消息写入到文件里,但文件对它们来说,只是一个通用的接口。开发者并没有想过利用硬件的特性做开发。而Kafka的开发者突破了这个限制,把硬件特性利用了起来,从而取得了更好的结果。
一旦理解了这一点,我们再来看其他的一些设计,就能学到更多的东西。比如,有一个著名的开源项目LMAX Disruptor,它号称是最强劲的线程通信库。它有一段非常奇怪的代码,类似这样:
protected long p1, p2, p3, p4, p5, p6, p7;
以正常程序员的标准,这简直是无厘头的低劣代码。而想要理解这段代码,你必须理解CPU缓存行的机制,这也是一种软硬结合的思路。
对于习惯写“软”件的程序员而言,在软件上投入的努力到达极限时,软硬结合是一种思路上的突破。当然,这种突破的前提是要对硬件的机制有所了解,这往往是很多程序员在基本功上欠缺的,可以学习一下计算机组成原理之类的课程。如果你有时间去学习,《深入理解计算机系统》一书值得一读。
今天是了解设计的第三部分:看实现。理解一个实现,是以对模型和接口的理解为前提的。
每个系统的实现都有非常多的细节,我们不可能一上来就把所有的细节吃透。如果想了解一个系统的实现,应该从软件结构和关键技术两个方面着手。无论是软件结构,还是关键技术,我们都需要带着自己的问题入手,而问题的出发点就是我们对模型和接口的理解。
了解软件的结构,其实,就是把分层的模型展开,看下一层的模型。一方面,你要知道这个层次给你提供了怎样的模型,另一方面,你要带着自己的问题去了解这些模型为什么要这么设计。
最后,我借着Kafka的关键技术还给你讲了软硬结合的思路,在系统优化之路上寻求突破时,可以增加你选择的道路。不过,实现都是有约束的,比如,Kafka的实现主要是针对机械硬盘做的优化,现在的SSD硬盘越来越多,成本越来越低,这个立意的出发点已经不像以前那样稳固了。
至此,了解设计的三步我们已经全部走完了。接下来,我们就要开始自己的设计历程了。首先,我们需要掌握一些关于设计的基础知识。下一讲,我们就从最基础的部分入手,我们来谈谈程序设计语言。
如果今天的内容你只能记住一件事,那请记住:理解实现,带着自己的问题,了解软件的结构和关键的技术。
最后,我想请你来思考一下,在项目上学习的哪些东西对你个人在实现思路上有了一个极大的突破。欢迎在留言区分享你的经历。
感谢阅读,如果你觉得这一讲的内容对你有帮助的话,也欢迎把它分享给你的朋友。
评论