你好,我是朱晔。

上一讲的几个例子中,其实都涉及了Stream API的最基本使用方法。今天,我会与你详细介绍复杂、功能强大的Stream API。

Stream流式操作,用于对集合进行投影、转换、过滤、排序等,更进一步地,这些操作能链式串联在一起使用,类似于SQL语句,可以大大简化代码。可以说,Stream操作是Java 8中最重要的内容,也是这个课程大部分代码都会用到的操作。

我先说明下,有些案例可能不太好理解,建议你对着代码逐一到源码中查看Stream操作的方法定义,以及JDK中的代码注释。

Stream操作详解

为了方便你理解Stream的各种操作,以及后面的案例,我先把这节课涉及的Stream操作汇总到了一张图中。你可以先熟悉一下。

在接下来的讲述中,我会围绕订单场景,给出如何使用Stream的各种API完成订单的统计、搜索、查询等功能,和你一起学习Stream流式操作的各种方法。你可以结合代码中的注释理解案例,也可以自己运行源码观察输出。

我们先定义一个订单类、一个订单商品类和一个顾客类,用作后续Demo代码的数据结构:

//订单类
@Data
public class Order {
    private Long id;
    private Long customerId;//顾客ID
    private String customerName;//顾客姓名
    private List<OrderItem> orderItemList;//订单商品明细
    private Double totalPrice;//总价格
    private LocalDateTime placedAt;//下单时间
}
//订单商品类
@Data
@AllArgsConstructor
@NoArgsConstructor
public class OrderItem {
    private Long productId;//商品ID
    private String productName;//商品名称
    private Double productPrice;//商品价格
    private Integer productQuantity;//商品数量
}
//顾客类
@Data
@AllArgsConstructor
public class Customer {
    private Long id;
    private String name;//顾客姓名
}

在这里,我们有一个orders字段保存了一些模拟数据,类型是List。这里,我就不贴出生成模拟数据的代码了。这不会影响你理解后面的代码,你也可以自己下载源码阅读。

创建流

要使用流,就要先创建流。创建流一般有五种方式:

//通过stream方法把List或数组转换为流
@Test
public void stream()
{
    Arrays.asList("a1", "a2", "a3").stream().forEach(System.out::println);
    Arrays.stream(new int[]{1, 2, 3}).forEach(System.out::println);
}

//通过Stream.of方法直接传入多个元素构成一个流
@Test
public void of()
{
    String[] arr = {"a", "b", "c"};
    Stream.of(arr).forEach(System.out::println);
    Stream.of("a", "b", "c").forEach(System.out::println);
    Stream.of(1, 2, "a").map(item -> item.getClass().getName()).forEach(System.out::println);
}

//通过Stream.iterate方法使用迭代的方式构造一个无限流,然后使用limit限制流元素个数
@Test
public void iterate()
{
    Stream.iterate(2, item -> item * 2).limit(10).forEach(System.out::println);
    Stream.iterate(BigInteger.ZERO, n -> n.add(BigInteger.TEN)).limit(10).forEach(System.out::println);
}

//通过Stream.generate方法从外部传入一个提供元素的Supplier来构造无限流,然后使用limit限制流元素个数
@Test
public void generate()
{
    Stream.generate(() -> "test").limit(3).forEach(System.out::println);
    Stream.generate(Math::random).limit(10).forEach(System.out::println);
}

//通过IntStream或DoubleStream构造基本类型的流
@Test
public void primitive()
{
    //演示IntStream和DoubleStream
    IntStream.range(1, 3).forEach(System.out::println);
    IntStream.range(0, 3).mapToObj(i -> "x").forEach(System.out::println);

    IntStream.rangeClosed(1, 3).forEach(System.out::println);
    DoubleStream.of(1.1, 2.2, 3.3).forEach(System.out::println);

    //各种转换,后面注释代表了输出结果
    System.out.println(IntStream.of(1, 2).toArray().getClass()); //class [I
    System.out.println(Stream.of(1, 2).mapToInt(Integer::intValue).toArray().getClass()); //class [I
    System.out.println(IntStream.of(1, 2).boxed().toArray().getClass()); //class [Ljava.lang.Object;
    System.out.println(IntStream.of(1, 2).asDoubleStream().toArray().getClass()); //class [D
    System.out.println(IntStream.of(1, 2).asLongStream().toArray().getClass()); //class [J

    //注意基本类型流和装箱后的流的区别
    Arrays.asList("a", "b", "c").stream()   // Stream<String>
            .mapToInt(String::length)       // IntStream
            .asLongStream()                 // LongStream
            .mapToDouble(x -> x / 10.0)     // DoubleStream
            .boxed()                        // Stream<Double>
            .mapToLong(x -> 1L)             // LongStream
            .mapToObj(x -> "")              // Stream<String>
            .collect(Collectors.toList());
}

filter

filter方法可以实现过滤操作,类似SQL中的where。我们可以使用一行代码,通过filter方法实现查询所有订单中最近半年金额大于40的订单,通过连续叠加filter方法进行多次条件过滤:

//最近半年的金额大于40的订单
orders.stream()
        .filter(Objects::nonNull) //过滤null值
        .filter(order -> order.getPlacedAt().isAfter(LocalDateTime.now().minusMonths(6))) //最近半年的订单
        .filter(order -> order.getTotalPrice() > 40) //金额大于40的订单
        .forEach(System.out::println);	

如果不使用Stream的话,必然需要一个中间集合来收集过滤后的结果,而且所有的过滤条件会堆积在一起,代码冗长且不易读。

map

map操作可以做转换(或者说投影),类似SQL中的select。为了对比,我用两种方式统计订单中所有商品的数量,前一种是通过两次遍历实现,后一种是通过两次mapToLong+sum方法实现:

//计算所有订单商品数量
//通过两次遍历实现
LongAdder longAdder = new LongAdder();
orders.stream().forEach(order ->
        order.getOrderItemList().forEach(orderItem -> longAdder.add(orderItem.getProductQuantity())));

//使用两次mapToLong+sum方法实现
assertThat(longAdder.longValue(), is(orders.stream().mapToLong(order ->
        order.getOrderItemList().stream()
                .mapToLong(OrderItem::getProductQuantity).sum()).sum()));

显然,后一种方式无需中间变量longAdder,更直观。

这里再补充一下,使用for循环生成数据,是我们平时常用的操作,也是这个课程会大量用到的。现在,我们可以用一行代码使用IntStream配合mapToObj替代for循环来生成数据,比如生成10个Product元素构成List:

//把IntStream通过转换Stream<Project>
System.out.println(IntStream.rangeClosed(1,10)
        .mapToObj(i->new Product((long)i, "product"+i, i*100.0))
        .collect(toList()));

flatMap

接下来,我们看看flatMap展开或者叫扁平化操作,相当于map+flat,通过map把每一个元素替换为一个流,然后展开这个流。

比如,我们要统计所有订单的总价格,可以有两种方式:

//直接展开订单商品进行价格统计
System.out.println(orders.stream()
        .flatMap(order -> order.getOrderItemList().stream())
        .mapToDouble(item -> item.getProductQuantity() * item.getProductPrice()).sum());

//另一种方式flatMap+mapToDouble=flatMapToDouble
System.out.println(orders.stream()
        .flatMapToDouble(order ->
                order.getOrderItemList()
                        .stream().mapToDouble(item -> item.getProductQuantity() * item.getProductPrice()))
        .sum());

这两种方式可以得到相同的结果,并无本质区别。

sorted

sorted操作可以用于行内排序的场景,类似SQL中的order by。比如,要实现大于50元订单的按价格倒序取前5,可以通过Order::getTotalPrice方法引用直接指定需要排序的依据字段,通过reversed()实现倒序:

//大于50的订单,按照订单价格倒序前5
orders.stream().filter(order -> order.getTotalPrice() > 50)
        .sorted(comparing(Order::getTotalPrice).reversed())
        .limit(5)
        .forEach(System.out::println);	

distinct

distinct操作的作用是去重,类似SQL中的distinct。比如下面的代码实现:

//去重的下单用户
System.out.println(orders.stream().map(order -> order.getCustomerName()).distinct().collect(joining(",")));

//所有购买过的商品
System.out.println(orders.stream()
        .flatMap(order -> order.getOrderItemList().stream())
        .map(OrderItem::getProductName)
        .distinct().collect(joining(",")));

skip & limit

skip和limit操作用于分页,类似MySQL中的limit。其中,skip实现跳过一定的项,limit用于限制项总数。比如下面的两段代码:

//按照下单时间排序,查询前2个订单的顾客姓名和下单时间
orders.stream()
        .sorted(comparing(Order::getPlacedAt))
        .map(order -> order.getCustomerName() + "@" + order.getPlacedAt())
        .limit(2).forEach(System.out::println);
//按照下单时间排序,查询第3和第4个订单的顾客姓名和下单时间
orders.stream()
        .sorted(comparing(Order::getPlacedAt))
        .map(order -> order.getCustomerName() + "@" + order.getPlacedAt())
        .skip(2).limit(2).forEach(System.out::println);

collect

collect是收集操作,对流进行终结(终止)操作,把流导出为我们需要的数据结构。“终结”是指,导出后,无法再串联使用其他中间操作,比如filter、map、flatmap、sorted、distinct、limit、skip。

在Stream操作中,collect是最复杂的终结操作,比较简单的终结操作还有forEach、toArray、min、max、count、anyMatch等,我就不再展开了,你可以查询JDK文档,搜索terminal operation或intermediate operation。

接下来,我通过6个案例,来演示下几种比较常用的collect操作:

//生成一定位数的随机字符串
System.out.println(random.ints(48, 122)
    .filter(i -> (i < 57 || i > 65) && (i < 90 || i > 97))
    .mapToObj(i -> (char) i)
    .limit(20)
    .collect(StringBuilder::new, StringBuilder::append, StringBuilder::append)
    .toString());

//所有下单的用户,使用toSet去重后实现字符串拼接
System.out.println(orders.stream()
    .map(order -> order.getCustomerName()).collect(toSet())
    .stream().collect(joining(",", "[", "]")));

//用toCollection收集器指定集合类型
System.out.println(orders.stream().limit(2).collect(toCollection(LinkedList::new)).getClass());

//使用toMap获取订单ID+下单用户名的Map
orders.stream()
    .collect(toMap(Order::getId, Order::getCustomerName))
    .entrySet().forEach(System.out::println);

//使用toMap获取下单用户名+最近一次下单时间的Map
orders.stream()
    .collect(toMap(Order::getCustomerName, Order::getPlacedAt, (x, y) -> x.isAfter(y) ? x : y))
    .entrySet().forEach(System.out::println);

//订单平均购买的商品数量
System.out.println(orders.stream().collect(averagingInt(order ->
    order.getOrderItemList().stream()
            .collect(summingInt(OrderItem::getProductQuantity)))));

可以看到,这6个操作使用Stream方式一行代码就可以实现,但使用非Stream方式实现的话,都需要几行甚至十几行代码。

有关Collectors类的一些常用静态方法,我总结到了一张图中,你可以再整理一下思路:

其中,groupBy和partitionBy比较复杂,我和你举例介绍。

groupBy

groupBy是分组统计操作,类似SQL中的group by子句。它和后面介绍的partitioningBy都是特殊的收集器,同样也是终结操作。分组操作比较复杂,为帮你理解得更透彻,我准备了8个案例:

//按照用户名分组,统计下单数量
System.out.println(orders.stream().collect(groupingBy(Order::getCustomerName, counting()))
        .entrySet().stream().sorted(Map.Entry.<String, Long>comparingByValue().reversed()).collect(toList()));

//按照用户名分组,统计订单总金额
System.out.println(orders.stream().collect(groupingBy(Order::getCustomerName, summingDouble(Order::getTotalPrice)))
        .entrySet().stream().sorted(Map.Entry.<String, Double>comparingByValue().reversed()).collect(toList()));

//按照用户名分组,统计商品采购数量
System.out.println(orders.stream().collect(groupingBy(Order::getCustomerName,
        summingInt(order -> order.getOrderItemList().stream()
                .collect(summingInt(OrderItem::getProductQuantity)))))
        .entrySet().stream().sorted(Map.Entry.<String, Integer>comparingByValue().reversed()).collect(toList()));

//统计最受欢迎的商品,倒序后取第一个
orders.stream()
        .flatMap(order -> order.getOrderItemList().stream())
        .collect(groupingBy(OrderItem::getProductName, summingInt(OrderItem::getProductQuantity)))
        .entrySet().stream()
        .sorted(Map.Entry.<String, Integer>comparingByValue().reversed())
        .map(Map.Entry::getKey)
        .findFirst()
        .ifPresent(System.out::println);

//统计最受欢迎的商品的另一种方式,直接利用maxBy
orders.stream()
        .flatMap(order -> order.getOrderItemList().stream())
        .collect(groupingBy(OrderItem::getProductName, summingInt(OrderItem::getProductQuantity)))
        .entrySet().stream()
        .collect(maxBy(Map.Entry.comparingByValue()))
        .map(Map.Entry::getKey)
        .ifPresent(System.out::println);

//按照用户名分组,选用户下的总金额最大的订单
orders.stream().collect(groupingBy(Order::getCustomerName, collectingAndThen(maxBy(comparingDouble(Order::getTotalPrice)), Optional::get)))
        .forEach((k, v) -> System.out.println(k + "#" + v.getTotalPrice() + "@" + v.getPlacedAt()));

//根据下单年月分组,统计订单ID列表
System.out.println(orders.stream().collect
        (groupingBy(order -> order.getPlacedAt().format(DateTimeFormatter.ofPattern("yyyyMM")),
                mapping(order -> order.getId(), toList()))));

//根据下单年月+用户名两次分组,统计订单ID列表
System.out.println(orders.stream().collect
        (groupingBy(order -> order.getPlacedAt().format(DateTimeFormatter.ofPattern("yyyyMM")),
                groupingBy(order -> order.getCustomerName(),
                        mapping(order -> order.getId(), toList())))));

如果不借助Stream转换为普通的Java代码,实现这些复杂的操作可能需要几十行代码。

partitionBy

partitioningBy用于分区,分区是特殊的分组,只有true和false两组。比如,我们把用户按照是否下单进行分区,给partitioningBy方法传入一个Predicate作为数据分区的区分,输出是Map<Boolean, List<T>>:

public static <T>
Collector<T, ?, Map<Boolean, List<T>>> partitioningBy(Predicate<? super T> predicate) {
    return partitioningBy(predicate, toList());
}

测试一下,partitioningBy配合anyMatch,可以把用户分为下过订单和没下过订单两组:

//根据是否有下单记录进行分区
System.out.println(Customer.getData().stream().collect(
        partitioningBy(customer -> orders.stream().mapToLong(Order::getCustomerId)
                .anyMatch(id -> id == customer.getId()))));

重点回顾

今天,我用了大量的篇幅和案例,和你展开介绍了Stream中很多具体的流式操作方法。有些案例可能不太好理解,我建议你对着代码逐一到源码中查看这些操作的方法定义,以及JDK中的代码注释。

最后,我建议你思考下,在日常工作中还会使用SQL统计哪些信息,这些SQL是否也可以用Stream来改写呢?Stream的API博大精深,但其中又有规律可循。这其中的规律主要就是,理清楚这些API传参的函数式接口定义,就能搞明白到底是需要我们提供数据、消费数据、还是转换数据等。那,掌握Stream的方法便是,多测试多练习,以强化记忆、加深理解。

今天用到的代码,我都放在了GitHub上,你可以点击这个链接查看。

思考与讨论

  1. 使用Stream可以非常方便地对List做各种操作,那有没有什么办法可以实现在整个过程中观察数据变化呢?比如,我们进行filter+map操作,如何观察filter后map的原始数据呢?
  2. Collectors类提供了很多现成的收集器,那我们有没有办法实现自定义的收集器呢?比如,实现一个MostPopularCollector,来得到List中出现次数最多的元素,满足下面两个测试用例:
assertThat(Stream.of(1, 1, 2, 2, 2, 3, 4, 5, 5).collect(new MostPopularCollector<>()).get(), is(2));
assertThat(Stream.of('a', 'b', 'c', 'c', 'c', 'd').collect(new MostPopularCollector<>()).get(), is('c'));

关于Java 8,你还有什么使用心得吗?我是朱晔,欢迎在评论区与我留言分享你的想法,也欢迎你把这篇文章分享给你的朋友或同事,一起交流。