Java SDK并发包内容很丰富,包罗万象,但是我觉得最核心的还是其对管程的实现。因为理论上利用管程,你几乎可以实现并发包里所有的工具类。在前面《08 | 管程:并发编程的万能钥匙》中我们提到过在并发编程领域,有两大核心问题:一个是互斥,即同一时刻只允许一个线程访问共享资源;另一个是同步,即线程之间如何通信、协作。这两大问题,管程都是能够解决的。Java SDK并发包通过Lock和Condition两个接口来实现管程,其中Lock用于解决互斥问题,Condition用于解决同步问题

今天我们重点介绍Lock的使用,在介绍Lock的使用之前,有个问题需要你首先思考一下:Java语言本身提供的synchronized也是管程的一种实现,既然Java从语言层面已经实现了管程了,那为什么还要在SDK里提供另外一种实现呢?难道Java标准委员会还能同意“重复造轮子”的方案?很显然它们之间是有巨大区别的。那区别在哪里呢?如果能深入理解这个问题,对你用好Lock帮助很大。下面我们就一起来剖析一下这个问题。

再造管程的理由

你也许曾经听到过很多这方面的传说,例如在Java的1.5版本中,synchronized性能不如SDK里面的Lock,但1.6版本之后,synchronized做了很多优化,将性能追了上来,所以1.6之后的版本又有人推荐使用synchronized了。那性能是否可以成为“重复造轮子”的理由呢?显然不能。因为性能问题优化一下就可以了,完全没必要“重复造轮子”。

到这里,关于这个问题,你是否能够想出一条理由来呢?如果你细心的话,也许能想到一点。那就是我们前面在介绍死锁问题的时候,提出了一个破坏不可抢占条件方案,但是这个方案synchronized没有办法解决。原因是synchronized申请资源的时候,如果申请不到,线程直接进入阻塞状态了,而线程进入阻塞状态,啥都干不了,也释放不了线程已经占有的资源。但我们希望的是:

对于“不可抢占”这个条件,占用部分资源的线程进一步申请其他资源时,如果申请不到,可以主动释放它占有的资源,这样不可抢占这个条件就破坏掉了。

如果我们重新设计一把互斥锁去解决这个问题,那该怎么设计呢?我觉得有三种方案。

  1. 能够响应中断。synchronized的问题是,持有锁A后,如果尝试获取锁B失败,那么线程就进入阻塞状态,一旦发生死锁,就没有任何机会来唤醒阻塞的线程。但如果阻塞状态的线程能够响应中断信号,也就是说当我们给阻塞的线程发送中断信号的时候,能够唤醒它,那它就有机会释放曾经持有的锁A。这样就破坏了不可抢占条件了。
  2. 支持超时。如果线程在一段时间之内没有获取到锁,不是进入阻塞状态,而是返回一个错误,那这个线程也有机会释放曾经持有的锁。这样也能破坏不可抢占条件。
  3. 非阻塞地获取锁。如果尝试获取锁失败,并不进入阻塞状态,而是直接返回,那这个线程也有机会释放曾经持有的锁。这样也能破坏不可抢占条件。

这三种方案可以全面弥补synchronized的问题。到这里相信你应该也能理解了,这三个方案就是“重复造轮子”的主要原因,体现在API上,就是Lock接口的三个方法。详情如下:

// 支持中断的API
void lockInterruptibly() 
  throws InterruptedException;
// 支持超时的API
boolean tryLock(long time, TimeUnit unit) 
  throws InterruptedException;
// 支持非阻塞获取锁的API
boolean tryLock();

如何保证可见性

Java SDK里面Lock的使用,有一个经典的范例,就是try{}finally{},需要重点关注的是在finally里面释放锁。这个范例无需多解释,你看一下下面的代码就明白了。但是有一点需要解释一下,那就是可见性是怎么保证的。你已经知道Java里多线程的可见性是通过Happens-Before规则保证的,而synchronized之所以能够保证可见性,也是因为有一条synchronized相关的规则:synchronized的解锁 Happens-Before 于后续对这个锁的加锁。那Java SDK里面Lock靠什么保证可见性呢?例如在下面的代码中,线程T1对value进行了+=1操作,那后续的线程T2能够看到value的正确结果吗?

class X {
  private final Lock rtl =
  new ReentrantLock();
  int value;
  public void addOne() {
    // 获取锁
    rtl.lock();  
    try {
      value+=1;
    } finally {
      // 保证锁能释放
      rtl.unlock();
    }
  }
}

答案必须是肯定的。Java SDK里面锁的实现非常复杂,这里我就不展开细说了,但是原理还是需要简单介绍一下:它是利用了volatile相关的Happens-Before规则。Java SDK里面的ReentrantLock,内部持有一个volatile 的成员变量state,获取锁的时候,会读写state的值;解锁的时候,也会读写state的值(简化后的代码如下面所示)。也就是说,在执行value+=1之前,程序先读写了一次volatile变量state,在执行value+=1之后,又读写了一次volatile变量state。根据相关的Happens-Before规则:

  1. 顺序性规则:对于线程T1,value+=1 Happens-Before 释放锁的操作unlock();
  2. volatile变量规则:由于state = 1会先读取state,所以线程T1的unlock()操作Happens-Before线程T2的lock()操作;
  3. 传递性规则:线程 T1的value+=1 Happens-Before 线程 T2 的 lock() 操作。
class SampleLock {
  volatile int state;
  // 加锁
  lock() {
    // 省略代码无数
    state = 1;
  }
  // 解锁
  unlock() {
    // 省略代码无数
    state = 0;
  }
}

所以说,后续线程T2能够看到value的正确结果。如果你觉得理解起来还有点困难,建议你重温一下前面我们讲过的《02 | Java内存模型:看Java如何解决可见性和有序性问题》里面的相关内容。

什么是可重入锁

如果你细心观察,会发现我们创建的锁的具体类名是ReentrantLock,这个翻译过来叫可重入锁,这个概念前面我们一直没有介绍过。所谓可重入锁,顾名思义,指的是线程可以重复获取同一把锁。例如下面代码中,当线程T1执行到 ① 处时,已经获取到了锁 rtl ,当在 ① 处调用 get()方法时,会在 ② 再次对锁 rtl 执行加锁操作。此时,如果锁 rtl 是可重入的,那么线程T1可以再次加锁成功;如果锁 rtl 是不可重入的,那么线程T1此时会被阻塞。

除了可重入锁,可能你还听说过可重入函数,可重入函数怎么理解呢?指的是线程可以重复调用?显然不是,所谓可重入函数,指的是多个线程可以同时调用该函数,每个线程都能得到正确结果;同时在一个线程内支持线程切换,无论被切换多少次,结果都是正确的。多线程可以同时执行,还支持线程切换,这意味着什么呢?线程安全啊。所以,可重入函数是线程安全的。

class X {
  private final Lock rtl =
  new ReentrantLock();
  int value;
  public int get() {
    // 获取锁
    rtl.lock();         ②
    try {
      return value;
    } finally {
      // 保证锁能释放
      rtl.unlock();
    }
  }
  public void addOne() {
    // 获取锁
    rtl.lock();  
    try {
      value = 1 + get(); ①
    } finally {
      // 保证锁能释放
      rtl.unlock();
    }
  }
}

公平锁与非公平锁

在使用ReentrantLock的时候,你会发现ReentrantLock这个类有两个构造函数,一个是无参构造函数,一个是传入fair参数的构造函数。fair参数代表的是锁的公平策略,如果传入true就表示需要构造一个公平锁,反之则表示要构造一个非公平锁。

//无参构造函数:默认非公平锁
public ReentrantLock() {
    sync = new NonfairSync();
}
//根据公平策略参数创建锁
public ReentrantLock(boolean fair){
    sync = fair ? new FairSync() 
                : new NonfairSync();
}

在前面《08 | 管程:并发编程的万能钥匙》中,我们介绍过入口等待队列,锁都对应着一个等待队列,如果一个线程没有获得锁,就会进入等待队列,当有线程释放锁的时候,就需要从等待队列中唤醒一个等待的线程。如果是公平锁,唤醒的策略就是谁等待的时间长,就唤醒谁,很公平;如果是非公平锁,则不提供这个公平保证,有可能等待时间短的线程反而先被唤醒。

用锁的最佳实践

你已经知道,用锁虽然能解决很多并发问题,但是风险也是挺高的。可能会导致死锁,也可能影响性能。这方面有是否有相关的最佳实践呢?有,还很多。但是我觉得最值得推荐的是并发大师Doug Lea《Java并发编程:设计原则与模式》一书中,推荐的三个用锁的最佳实践,它们分别是:

  1. 永远只在更新对象的成员变量时加锁
  2. 永远只在访问可变的成员变量时加锁
  3. 永远不在调用其他对象的方法时加锁

这三条规则,前两条估计你一定会认同,最后一条你可能会觉得过于严苛。但是我还是倾向于你去遵守,因为调用其他对象的方法,实在是太不安全了,也许“其他”方法里面有线程sleep()的调用,也可能会有奇慢无比的I/O操作,这些都会严重影响性能。更可怕的是,“其他”类的方法可能也会加锁,然后双重加锁就可能导致死锁。

并发问题,本来就难以诊断,所以你一定要让你的代码尽量安全,尽量简单,哪怕有一点可能会出问题,都要努力避免。

总结

Java SDK 并发包里的Lock接口里面的每个方法,你可以感受到,都是经过深思熟虑的。除了支持类似synchronized隐式加锁的lock()方法外,还支持超时、非阻塞、可中断的方式获取锁,这三种方式为我们编写更加安全、健壮的并发程序提供了很大的便利。希望你以后在使用锁的时候,一定要仔细斟酌。

除了并发大师Doug Lea推荐的三个最佳实践外,你也可以参考一些诸如:减少锁的持有时间、减小锁的粒度等业界广为人知的规则,其实本质上它们都是相通的,不过是在该加锁的地方加锁而已。你可以自己体会,自己总结,最终总结出自己的一套最佳实践来。

课后思考

你已经知道 tryLock() 支持非阻塞方式获取锁,下面这段关于转账的程序就使用到了 tryLock(),你来看看,它是否存在死锁问题呢?

class Account {
  private int balance;
  private final Lock lock
          = new ReentrantLock();
  // 转账
  void transfer(Account tar, int amt){
    while (true) {
      if(this.lock.tryLock()) {
        try {
          if (tar.lock.tryLock()) {
            try {
              this.balance -= amt;
              tar.balance += amt;
            } finally {
              tar.lock.unlock();
            }
          }//if
        } finally {
          this.lock.unlock();
        }
      }//if
    }//while
  }//transfer
}

欢迎在留言区与我分享你的想法,也欢迎你在留言区记录你的思考过程。感谢阅读,如果你觉得这篇文章对你有帮助的话,也欢迎把它分享给更多的朋友。

评论