在Java语言中,除了原始数据类型的变量,其他所有都是所谓的引用类型,指向各种不同的对象,理解引用对于掌握Java对象生命周期和JVM内部相关机制非常有帮助。

今天我要问你的问题是,强引用、软引用、弱引用、幻象引用有什么区别?具体使用场景是什么?

典型回答

不同的引用类型,主要体现的是对象不同的可达性(reachable)状态和对垃圾收集的影响

所谓强引用(“Strong” Reference),就是我们最常见的普通对象引用,只要还有强引用指向一个对象,就能表明对象还“活着”,垃圾收集器不会碰这种对象。对于一个普通的对象,如果没有其他的引用关系,只要超过了引用的作用域或者显式地将相应(强)引用赋值为null,就是可以被垃圾收集的了,当然具体回收时机还是要看垃圾收集策略。

软引用(SoftReference),是一种相对强引用弱化一些的引用,可以让对象豁免一些垃圾收集,只有当JVM认为内存不足时,才会去试图回收软引用指向的对象。JVM会确保在抛出OutOfMemoryError之前,清理软引用指向的对象。软引用通常用来实现内存敏感的缓存,如果还有空闲内存,就可以暂时保留缓存,当内存不足时清理掉,这样就保证了使用缓存的同时,不会耗尽内存。

弱引用(WeakReference)并不能使对象豁免垃圾收集,仅仅是提供一种访问在弱引用状态下对象的途径。这就可以用来构建一种没有特定约束的关系,比如,维护一种非强制性的映射关系,如果试图获取时对象还在,就使用它,否则重现实例化。它同样是很多缓存实现的选择。

对于幻象引用,有时候也翻译成虚引用,你不能通过它访问对象。幻象引用仅仅是提供了一种确保对象被finalize以后,做某些事情的机制,比如,通常用来做所谓的Post-Mortem清理机制,我在专栏上一讲中介绍的Java平台自身Cleaner机制等,也有人利用幻象引用监控对象的创建和销毁。

考点分析

这道面试题,属于既偏门又非常高频的一道题目。说它偏门,是因为在大多数应用开发中,很少直接操作各种不同引用,虽然我们使用的类库、框架可能利用了其机制。它被频繁问到,是因为这是一个综合性的题目,既考察了我们对基础概念的理解,也考察了对底层对象生命周期、垃圾收集机制等的掌握。

充分理解这些引用,对于我们设计可靠的缓存等框架,或者诊断应用OOM等问题,会很有帮助。比如,诊断MySQL connector-j驱动在特定模式下(useCompression=true)的内存泄漏问题,就需要我们理解怎么排查幻象引用的堆积问题。

知识扩展

1.对象可达性状态流转分析

首先,请你看下面流程图,我这里简单总结了对象生命周期和不同可达性状态,以及不同状态可能的改变关系,可能未必100%严谨,来阐述下可达性的变化。

我来解释一下上图的具体状态,这是Java定义的不同可达性级别(reachability level),具体如下:

判断对象可达性,是JVM垃圾收集器决定如何处理对象的一部分考虑。

所有引用类型,都是抽象类java.lang.ref.Reference的子类,你可能注意到它提供了get()方法:

除了幻象引用(因为get永远返回null),如果对象还没有被销毁,都可以通过get方法获取原有对象。这意味着,利用软引用和弱引用,我们可以将访问到的对象,重新指向强引用,也就是人为的改变了对象的可达性状态!这也是为什么我在上面图里有些地方画了双向箭头。

所以,对于软引用、弱引用之类,垃圾收集器可能会存在二次确认的问题,以保证处于弱引用状态的对象,没有改变为强引用。

但是,你觉得这里有没有可能出现什么问题呢?

不错,如果我们错误的保持了强引用(比如,赋值给了static变量),那么对象可能就没有机会变回类似弱引用的可达性状态了,就会产生内存泄漏。所以,检查弱引用指向对象是否被垃圾收集,也是诊断是否有特定内存泄漏的一个思路,如果我们的框架使用到弱引用又怀疑有内存泄漏,就可以从这个角度检查。

2.引用队列(ReferenceQueue)使用

谈到各种引用的编程,就必然要提到引用队列。我们在创建各种引用并关联到相应对象时,可以选择是否需要关联引用队列,JVM会在特定时机将引用enqueue到队列里,我们可以从队列里获取引用(remove方法在这里实际是有获取的意思)进行相关后续逻辑。尤其是幻象引用,get方法只返回null,如果再不指定引用队列,基本就没有意义了。看看下面的示例代码。利用引用队列,我们可以在对象处于相应状态时(对于幻象引用,就是前面说的被finalize了,处于幻象可达状态),执行后期处理逻辑。

Object counter = new Object();
ReferenceQueue refQueue = new ReferenceQueue<>();
PhantomReference<Object> p = new PhantomReference<>(counter, refQueue);
counter = null;
System.gc();
try {
    // Remove是一个阻塞方法,可以指定timeout,或者选择一直阻塞
    Reference<Object> ref = refQueue.remove(1000L);
    if (ref != null) {
        // do something
    }
} catch (InterruptedException e) {
    // Handle it
}

3.显式地影响软引用垃圾收集

前面泛泛提到了引用对垃圾收集的影响,尤其是软引用,到底JVM内部是怎么处理它的,其实并不是非常明确。那么我们能不能使用什么方法来影响软引用的垃圾收集呢?

答案是有的。软引用通常会在最后一次引用后,还能保持一段时间,默认值是根据堆剩余空间计算的(以M bytes为单位)。从Java 1.3.1开始,提供了-XX:SoftRefLRUPolicyMSPerMB参数,我们可以以毫秒(milliseconds)为单位设置。比如,下面这个示例就是设置为3秒(3000毫秒)。

-XX:SoftRefLRUPolicyMSPerMB=3000

这个剩余空间,其实会受不同JVM模式影响,对于Client模式,比如通常的Windows 32 bit JDK,剩余空间是计算当前堆里空闲的大小,所以更加倾向于回收;而对于server模式JVM,则是根据-Xmx指定的最大值来计算。

本质上,这个行为还是个黑盒,取决于JVM实现,即使是上面提到的参数,在新版的JDK上也未必有效,另外Client模式的JDK已经逐步退出历史舞台。所以在我们应用时,可以参考类似设置,但不要过于依赖它。

4.诊断JVM引用情况

如果你怀疑应用存在引用(或finalize)导致的回收问题,可以有很多工具或者选项可供选择,比如HotSpot JVM自身便提供了明确的选项(PrintReferenceGC)去获取相关信息,我指定了下面选项去使用JDK 8运行一个样例应用:

-XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintReferenceGC

这是JDK 8使用ParrallelGC收集的垃圾收集日志,各种引用数量非常清晰。

0.403: [GC (Allocation Failure) 0.871: [SoftReference, 0 refs, 0.0000393 secs]0.871: [WeakReference, 8 refs, 0.0000138 secs]0.871: [FinalReference, 4 refs, 0.0000094 secs]0.871: [PhantomReference, 0 refs, 0 refs, 0.0000085 secs]0.871: [JNI Weak Reference, 0.0000071 secs][PSYoungGen: 76272K->10720K(141824K)] 128286K->128422K(316928K), 0.4683919 secs] [Times: user=1.17 sys=0.03, real=0.47 secs] 

注意:JDK 9对JVM和垃圾收集日志进行了广泛的重构,类似PrintGCTimeStamps和PrintReferenceGC已经不再存在,我在专栏后面的垃圾收集主题里会更加系统的阐述。

5.Reachability Fence

除了我前面介绍的几种基本引用类型,我们也可以通过底层API来达到强引用的效果,这就是所谓的设置reachability fence

为什么需要这种机制呢?考虑一下这样的场景,按照Java语言规范,如果一个对象没有指向强引用,就符合垃圾收集的标准,有些时候,对象本身并没有强引用,但是也许它的部分属性还在被使用,这样就导致诡异的问题,所以我们需要一个方法,在没有强引用情况下,通知JVM对象是在被使用的。说起来有点绕,我们来看看Java 9中提供的案例。

class Resource {
 private static ExternalResource[] externalResourceArray = ...
 int myIndex; Resource(...) {
     myIndex = ...
     externalResourceArray[myIndex] = ...;
     ...
 }
 protected void finalize() {
     externalResourceArray[myIndex] = null;
     ...
 }
 public void action() {
 try {
     // 需要被保护的代码
     int i = myIndex;
     Resource.update(externalResourceArray[i]);
 } finally {
     // 调用reachbilityFence,明确保障对象strongly reachable
     Reference.reachabilityFence(this);
 }
 }
 private static void update(ExternalResource ext) {
    ext.status = ...;
 }
} 

方法action的执行,依赖于对象的部分属性,所以被特定保护了起来。否则,如果我们在代码中像下面这样调用,那么就可能会出现困扰,因为没有强引用指向我们创建出来的Resource对象,JVM对它进行finalize操作是完全合法的。

new Resource().action()

类似的书写结构,在异步编程中似乎是很普遍的,因为异步编程中往往不会用传统的“执行->返回->使用”的结构。

在Java 9之前,实现类似功能相对比较繁琐,有的时候需要采取一些比较隐晦的小技巧。幸好,java.lang.ref.Reference给我们提供了新方法,它是JEP 193: Variable Handles的一部分,将Java平台底层的一些能力暴露出来:

static void reachabilityFence(Object ref)

在JDK源码中,reachabilityFence大多使用在Executors或者类似新的HTTP/2客户端代码中,大部分都是异步调用的情况。编程中,可以按照上面这个例子,将需要reachability保障的代码段利用try-finally包围起来,在finally里明确声明对象强可达。

今天,我总结了Java语言提供的几种引用类型、相应可达状态以及对于JVM工作的意义,并分析了引用队列使用的一些实际情况,最后介绍了在新的编程模式下,如何利用API去保障对象不被意外回收,希望对你有所帮助。

一课一练

关于今天我们讨论的题目你做到心中有数了吗?给你留一道练习题,你能从自己的产品或者第三方类库中找到使用各种引用的案例吗?它们都试图解决什么问题?

请你在留言区写写你的答案,我会选出经过认真思考的留言,送给你一份学习鼓励金,欢迎你与我一起讨论。

你的朋友是不是也在准备面试呢?你可以“请朋友读”,把今天的题目分享出去,或许你能帮到他。

评论