我在之前两讲介绍了Java集合框架的典型容器类,它们绝大部分都不是线程安全的,仅有的线程安全实现,比如Vector、Stack,在性能方面也远不尽如人意。幸好Java语言提供了并发包(java.util.concurrent),为高度并发需求提供了更加全面的工具支持。

今天我要问你的问题是,如何保证容器是线程安全的?ConcurrentHashMap如何实现高效地线程安全?

典型回答

Java提供了不同层面的线程安全支持。在传统集合框架内部,除了Hashtable等同步容器,还提供了所谓的同步包装器(Synchronized Wrapper),我们可以调用Collections工具类提供的包装方法,来获取一个同步的包装容器(如Collections.synchronizedMap),但是它们都是利用非常粗粒度的同步方式,在高并发情况下,性能比较低下。

另外,更加普遍的选择是利用并发包提供的线程安全容器类,它提供了:

具体保证线程安全的方式,包括有从简单的synchronize方式,到基于更加精细化的,比如基于分离锁实现的ConcurrentHashMap等并发实现等。具体选择要看开发的场景需求,总体来说,并发包内提供的容器通用场景,远优于早期的简单同步实现。

考点分析

谈到线程安全和并发,可以说是Java面试中必考的考点,我上面给出的回答是一个相对宽泛的总结,而且ConcurrentHashMap等并发容器实现也在不断演进,不能一概而论。

如果要深入思考并回答这个问题及其扩展方面,至少需要:

今天我主要是延续专栏之前两讲的内容,重点解读经常被同时考察的HashMap和ConcurrentHashMap。今天这一讲并不是对并发方面的全面梳理,毕竟这也不是专栏一讲可以介绍完整的,算是个开胃菜吧,类似CAS等更加底层的机制,后面会在Java进阶模块中的并发主题有更加系统的介绍。

知识扩展

1.为什么需要ConcurrentHashMap?

Hashtable本身比较低效,因为它的实现基本就是将put、get、size等各种方法加上“synchronized”。简单来说,这就导致了所有并发操作都要竞争同一把锁,一个线程在进行同步操作时,其他线程只能等待,大大降低了并发操作的效率。

前面已经提过HashMap不是线程安全的,并发情况会导致类似CPU占用100%等一些问题,那么能不能利用Collections提供的同步包装器来解决问题呢?

看看下面的代码片段,我们发现同步包装器只是利用输入Map构造了另一个同步版本,所有操作虽然不再声明成为synchronized方法,但是还是利用了“this”作为互斥的mutex,没有真正意义上的改进!

private static class SynchronizedMap<K,V>
    implements Map<K,V>, Serializable {
    private final Map<K,V> m;     // Backing Map
    final Object      mutex;        // Object on which to synchronize
    // …
    public int size() {
        synchronized (mutex) {return m.size();}
    }
 // … 
}

所以,Hashtable或者同步包装版本,都只是适合在非高度并发的场景下。

2.ConcurrentHashMap分析

我们再来看看ConcurrentHashMap是如何设计实现的,为什么它能大大提高并发效率。

首先,我这里强调,ConcurrentHashMap的设计实现其实一直在演化,比如在Java 8中就发生了非常大的变化(Java 7其实也有不少更新),所以,我这里将比较分析结构、实现机制等方面,对比不同版本的主要区别。

早期ConcurrentHashMap,其实现是基于:

你可以参考下面这个早期ConcurrentHashMap内部结构的示意图,其核心是利用分段设计,在进行并发操作的时候,只需要锁定相应段,这样就有效避免了类似Hashtable整体同步的问题,大大提高了性能。

在构造的时候,Segment的数量由所谓的concurrencyLevel决定,默认是16,也可以在相应构造函数直接指定。注意,Java需要它是2的幂数值,如果输入是类似15这种非幂值,会被自动调整到16之类2的幂数值。

具体情况,我们一起看看一些Map基本操作的源码,这是JDK 7比较新的get代码。针对具体的优化部分,为方便理解,我直接注释在代码段里,get操作需要保证的是可见性,所以并没有什么同步逻辑。

public V get(Object key) {
        Segment<K,V> s; // manually integrate access methods to reduce overhead
        HashEntry<K,V>[] tab;
        int h = hash(key.hashCode());
       //利用位操作替换普通数学运算
       long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        // 以Segment为单位,进行定位
        // 利用Unsafe直接进行volatile access
        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) {
           //省略
          }
        return null;
    }

而对于put操作,首先是通过二次哈希避免哈希冲突,然后以Unsafe调用方式,直接获取相应的Segment,然后进行线程安全的put操作:

 public V put(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();
        // 二次哈希,以保证数据的分散性,避免哈希冲突
        int hash = hash(key.hashCode());
        int j = (hash >>> segmentShift) & segmentMask;
        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
            s = ensureSegment(j);
        return s.put(key, hash, value, false);
    }

其核心逻辑实现在下面的内部方法中:

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
            // scanAndLockForPut会去查找是否有key相同Node
            // 无论如何,确保获取锁
            HashEntry<K,V> node = tryLock() ? null :
                scanAndLockForPut(key, hash, value);
            V oldValue;
            try {
                HashEntry<K,V>[] tab = table;
                int index = (tab.length - 1) & hash;
                HashEntry<K,V> first = entryAt(tab, index);
                for (HashEntry<K,V> e = first;;) {
                    if (e != null) {
                        K k;
                        // 更新已有value...
                    }
                    else {
                        // 放置HashEntry到特定位置,如果超过阈值,进行rehash
                        // ...
                    }
                }
            } finally {
                unlock();
            }
            return oldValue;
        }

所以,从上面的源码清晰的看出,在进行并发写操作时:

另外一个Map的size方法同样需要关注,它的实现涉及分离锁的一个副作用。

试想,如果不进行同步,简单的计算所有Segment的总值,可能会因为并发put,导致结果不准确,但是直接锁定所有Segment进行计算,就会变得非常昂贵。其实,分离锁也限制了Map的初始化等操作。

所以,ConcurrentHashMap的实现是通过重试机制(RETRIES_BEFORE_LOCK,指定重试次数2),来试图获得可靠值。如果没有监控到发生变化(通过对比Segment.modCount),就直接返回,否则获取锁进行操作。

下面我来对比一下,在Java 8和之后的版本中,ConcurrentHashMap发生了哪些变化呢?

先看看现在的数据存储内部实现,我们可以发现Key是final的,因为在生命周期中,一个条目的Key发生变化是不可能的;与此同时val,则声明为volatile,以保证可见性。

 static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        volatile V val;
        volatile Node<K,V> next;
        // … 
    }

我这里就不再介绍get方法和构造函数了,相对比较简单,直接看并发的put是如何实现的。

final V putVal(K key, V value, boolean onlyIfAbsent) { if (key == null || value == null) throw new NullPointerException();
    int hash = spread(key.hashCode());
    int binCount = 0;
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh; K fk; V fv;
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            // 利用CAS去进行无锁线程安全操作,如果bin是空的
            if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
                break; 
        }
        else if ((fh = f.hash) == MOVED)
            tab = helpTransfer(tab, f);
        else if (onlyIfAbsent // 不加锁,进行检查
                 && fh == hash
                 && ((fk = f.key) == key || (fk != null && key.equals(fk)))
                 && (fv = f.val) != null)
            return fv;
        else {
            V oldVal = null;
            synchronized (f) {
                   // 细粒度的同步修改操作... 
                }
            }
            // Bin超过阈值,进行树化
            if (binCount != 0) {
                if (binCount >= TREEIFY_THRESHOLD)
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    addCount(1L, binCount);
    return null;
}

初始化操作实现在initTable里面,这是一个典型的CAS使用场景,利用volatile的sizeCtl作为互斥手段:如果发现竞争性的初始化,就spin在那里,等待条件恢复;否则利用CAS设置排他标志。如果成功则进行初始化;否则重试。

请参考下面代码:

private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {
        // 如果发现冲突,进行spin等待
        if ((sc = sizeCtl) < 0)
            Thread.yield(); 
        // CAS成功返回true,则进入真正的初始化逻辑
        else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
            try {
                if ((tab = table) == null || tab.length == 0) {
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    @SuppressWarnings("unchecked")
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    table = tab = nt;
                    sc = n - (n >>> 2);
                }
            } finally {
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}

当bin为空时,同样是没有必要锁定,也是以CAS操作去放置。

你有没有注意到,在同步逻辑上,它使用的是synchronized,而不是通常建议的ReentrantLock之类,这是为什么呢?现代JDK中,synchronized已经被不断优化,可以不再过分担心性能差异,另外,相比于ReentrantLock,它可以减少内存消耗,这是个非常大的优势。

与此同时,更多细节实现通过使用Unsafe进行了优化,例如tabAt就是直接利用getObjectAcquire,避免间接调用的开销。

static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
    return (Node<K,V>)U.getObjectAcquire(tab, ((long)i << ASHIFT) + ABASE);
}

再看看,现在是如何实现size操作的。阅读代码你会发现,真正的逻辑是在sumCount方法中, 那么sumCount做了什么呢?

final long sumCount() {
    CounterCell[] as = counterCells; CounterCell a;
    long sum = baseCount;
    if (as != null) {
        for (int i = 0; i < as.length; ++i) {
            if ((a = as[i]) != null)
                sum += a.value;
        }
    }
    return sum;
}

我们发现,虽然思路仍然和以前类似,都是分而治之的进行计数,然后求和处理,但实现却基于一个奇怪的CounterCell。 难道它的数值,就更加准确吗?数据一致性是怎么保证的?

static final class CounterCell {
    volatile long value;
    CounterCell(long x) { value = x; }
}

其实,对于CounterCell的操作,是基于java.util.concurrent.atomic.LongAdder进行的,是一种JVM利用空间换取更高效率的方法,利用了Striped64内部的复杂逻辑。这个东西非常小众,大多数情况下,建议还是使用AtomicLong,足以满足绝大部分应用的性能需求。

今天我从线程安全问题开始,概念性的总结了基本容器工具,分析了早期同步容器的问题,进而分析了Java 7和Java 8中ConcurrentHashMap是如何设计实现的,希望ConcurrentHashMap的并发技巧对你在日常开发可以有所帮助。

一课一练

关于今天我们讨论的题目你做到心中有数了吗?留一个道思考题给你,在产品代码中,有没有典型的场景需要使用类似ConcurrentHashMap这样的并发容器呢?

请你在留言区写写你对这个问题的思考,我会选出经过认真思考的留言,送给你一份学习鼓励金,欢迎你与我一起讨论。

你的朋友是不是也在准备面试呢?你可以“请朋友读”,把今天的题目分享给好友,或许你能帮到他。