你好,我是胡夕。今天我要和你分享的主题是:Kafka中的高水位和Leader Epoch机制。
你可能听说过高水位(High Watermark),但不一定耳闻过Leader Epoch。前者是Kafka中非常重要的概念,而后者是社区在0.11版本中新推出的,主要是为了弥补高水位机制的一些缺陷。鉴于高水位机制在Kafka中举足轻重,而且深受各路面试官的喜爱,今天我们就来重点说说高水位。当然,我们也会花一部分时间来讨论Leader Epoch以及它的角色定位。
首先,我们要明确一下基本的定义:什么是高水位?或者说什么是水位?水位一词多用于流式处理领域,比如,Spark Streaming或Flink框架中都有水位的概念。教科书中关于水位的经典定义通常是这样的:
在时刻T,任意创建时间(Event Time)为T’,且T’≤T的所有事件都已经到达或被观测到,那么T就被定义为水位。
“Streaming System”一书则是这样表述水位的:
水位是一个单调增加且表征最早未完成工作(oldest work not yet completed)的时间戳。
为了帮助你更好地理解水位,我借助这本书里的一张图来说明一下。
图中标注“Completed”的蓝色部分代表已完成的工作,标注“In-Flight”的红色部分代表正在进行中的工作,两者的边界就是水位线。
在Kafka的世界中,水位的概念有一点不同。Kafka的水位不是时间戳,更与时间无关。它是和位置信息绑定的,具体来说,它是用消息位移来表征的。另外,Kafka源码使用的表述是高水位,因此,今天我也会统一使用“高水位”或它的缩写HW来进行讨论。值得注意的是,Kafka中也有低水位(Low Watermark),它是与Kafka删除消息相关联的概念,与今天我们要讨论的内容没有太多联系,我就不展开讲了。
在Kafka中,高水位的作用主要有2个。
下面这张图展示了多个与高水位相关的Kafka术语。我来详细解释一下图中的内容,同时澄清一些常见的误区。
我们假设这是某个分区Leader副本的高水位图。首先,请你注意图中的“已提交消息”和“未提交消息”。我们之前在专栏第11讲谈到Kafka持久性保障的时候,特意对两者进行了区分。现在,我借用高水位再次强调一下。在分区高水位以下的消息被认为是已提交消息,反之就是未提交消息。消费者只能消费已提交消息,即图中位移小于8的所有消息。注意,这里我们不讨论Kafka事务,因为事务机制会影响消费者所能看到的消息的范围,它不只是简单依赖高水位来判断。它依靠一个名为LSO(Log Stable Offset)的位移值来判断事务型消费者的可见性。
另外,需要关注的是,位移值等于高水位的消息也属于未提交消息。也就是说,高水位上的消息是不能被消费者消费的。
图中还有一个日志末端位移的概念,即Log End Offset,简写是LEO。它表示副本写入下一条消息的位移值。注意,数字15所在的方框是虚线,这就说明,这个副本当前只有15条消息,位移值是从0到14,下一条新消息的位移是15。显然,介于高水位和LEO之间的消息就属于未提交消息。这也从侧面告诉了我们一个重要的事实,那就是:同一个副本对象,其高水位值不会大于LEO值。
高水位和LEO是副本对象的两个重要属性。Kafka所有副本都有对应的高水位和LEO值,而不仅仅是Leader副本。只不过Leader副本比较特殊,Kafka使用Leader副本的高水位来定义所在分区的高水位。换句话说,分区的高水位就是其Leader副本的高水位。
现在,我们知道了每个副本对象都保存了一组高水位值和LEO值,但实际上,在Leader副本所在的Broker上,还保存了其他Follower副本的LEO值。我们一起来看看下面这张图。
在这张图中,我们可以看到,Broker 0上保存了某分区的Leader副本和所有Follower副本的LEO值,而Broker 1上仅仅保存了该分区的某个Follower副本。Kafka把Broker 0上保存的这些Follower副本又称为远程副本(Remote Replica)。Kafka副本机制在运行过程中,会更新Broker 1上Follower副本的高水位和LEO值,同时也会更新Broker 0上Leader副本的高水位和LEO以及所有远程副本的LEO,但它不会更新远程副本的高水位值,也就是我在图中标记为灰色的部分。
为什么要在Broker 0上保存这些远程副本呢?其实,它们的主要作用是,帮助Leader副本确定其高水位,也就是分区高水位。
为了帮助你更好地记忆这些值被更新的时机,我做了一张表格。只有搞清楚了更新机制,我们才能开始讨论Kafka副本机制的原理,以及它是如何使用高水位来执行副本消息同步的。
在这里,我稍微解释一下,什么叫与Leader副本保持同步。判断的条件有两个。
乍一看,这两个条件好像是一回事,因为目前某个副本能否进入ISR就是靠第2个条件判断的。但有些时候,会发生这样的情况:即Follower副本已经“追上”了Leader的进度,却不在ISR中,比如某个刚刚重启回来的副本。如果Kafka只判断第1个条件的话,就可能出现某些副本具备了“进入ISR”的资格,但却尚未进入到ISR中的情况。此时,分区高水位值就可能超过ISR中副本LEO,而高水位 > LEO的情形是不被允许的。
下面,我们分别从Leader副本和Follower副本两个维度,来总结一下高水位和LEO的更新机制。
Leader副本
处理生产者请求的逻辑如下:
处理Follower副本拉取消息的逻辑如下:
Follower副本
从Leader拉取消息的处理逻辑如下:
搞清楚了这些值的更新机制之后,我来举一个实际的例子,说明一下Kafka副本同步的全流程。该例子使用一个单分区且有两个副本的主题。
当生产者发送一条消息时,Leader和Follower副本对应的高水位是怎么被更新的呢?我给出了一些图片,我们一一来看。
首先是初始状态。下面这张图中的remote LEO就是刚才的远程副本的LEO值。在初始状态时,所有值都是0。
当生产者给主题分区发送一条消息后,状态变更为:
此时,Leader副本成功将消息写入了本地磁盘,故LEO值被更新为1。
Follower再次尝试从Leader拉取消息。和之前不同的是,这次有消息可以拉取了,因此状态进一步变更为:
这时,Follower副本也成功地更新LEO为1。此时,Leader和Follower副本的LEO都是1,但各自的高水位依然是0,还没有被更新。它们需要在下一轮的拉取中被更新,如下图所示:
在新一轮的拉取请求中,由于位移值是0的消息已经拉取成功,因此Follower副本这次请求拉取的是位移值=1的消息。Leader副本接收到此请求后,更新远程副本LEO为1,然后更新Leader高水位为1。做完这些之后,它会将当前已更新过的高水位值1发送给Follower副本。Follower副本接收到以后,也将自己的高水位值更新成1。至此,一次完整的消息同步周期就结束了。事实上,Kafka就是利用这样的机制,实现了Leader和Follower副本之间的同步。
故事讲到这里似乎很完美,依托于高水位,Kafka既界定了消息的对外可见性,又实现了异步的副本同步机制。不过,我们还是要思考一下这里面存在的问题。
从刚才的分析中,我们知道,Follower副本的高水位更新需要一轮额外的拉取请求才能实现。如果把上面那个例子扩展到多个Follower副本,情况可能更糟,也许需要多轮拉取请求。也就是说,Leader副本高水位更新和Follower副本高水位更新在时间上是存在错配的。这种错配是很多“数据丢失”或“数据不一致”问题的根源。基于此,社区在0.11版本正式引入了Leader Epoch概念,来规避因高水位更新错配导致的各种不一致问题。
所谓Leader Epoch,我们大致可以认为是Leader版本。它由两部分数据组成。
我举个例子来说明一下Leader Epoch。假设现在有两个Leader Epoch<0, 0>和<1, 120>,那么,第一个Leader Epoch表示版本号是0,这个版本的Leader从位移0开始保存消息,一共保存了120条消息。之后,Leader发生了变更,版本号增加到1,新版本的起始位移是120。
Kafka Broker会在内存中为每个分区都缓存Leader Epoch数据,同时它还会定期地将这些信息持久化到一个checkpoint文件中。当Leader副本写入消息到磁盘时,Broker会尝试更新这部分缓存。如果该Leader是首次写入消息,那么Broker会向缓存中增加一个Leader Epoch条目,否则就不做更新。这样,每次有Leader变更时,新的Leader副本会查询这部分缓存,取出对应的Leader Epoch的起始位移,以避免数据丢失和不一致的情况。
接下来,我们来看一个实际的例子,它展示的是Leader Epoch是如何防止数据丢失的。请先看下图。
我稍微解释一下,单纯依赖高水位是怎么造成数据丢失的。开始时,副本A和副本B都处于正常状态,A是Leader副本。某个使用了默认acks设置的生产者程序向A发送了两条消息,A全部写入成功,此时Kafka会通知生产者说两条消息全部发送成功。
现在我们假设Leader和Follower都写入了这两条消息,而且Leader副本的高水位也已经更新了,但Follower副本高水位还未更新——这是可能出现的。还记得吧,Follower端高水位的更新与Leader端有时间错配。倘若此时副本B所在的Broker宕机,当它重启回来后,副本B会执行日志截断操作,将LEO值调整为之前的高水位值,也就是1。这就是说,位移值为1的那条消息被副本B从磁盘中删除,此时副本B的底层磁盘文件中只保存有1条消息,即位移值为0的那条消息。
当执行完截断操作后,副本B开始从A拉取消息,执行正常的消息同步。如果就在这个节骨眼上,副本A所在的Broker宕机了,那么Kafka就别无选择,只能让副本B成为新的Leader,此时,当A回来后,需要执行相同的日志截断操作,即将高水位调整为与B相同的值,也就是1。这样操作之后,位移值为1的那条消息就从这两个副本中被永远地抹掉了。这就是这张图要展示的数据丢失场景。
严格来说,这个场景发生的前提是Broker端参数min.insync.replicas设置为1。此时一旦消息被写入到Leader副本的磁盘,就会被认为是“已提交状态”,但现有的时间错配问题导致Follower端的高水位更新是有滞后的。如果在这个短暂的滞后时间窗口内,接连发生Broker宕机,那么这类数据的丢失就是不可避免的。
现在,我们来看下如何利用Leader Epoch机制来规避这种数据丢失。我依然用图的方式来说明。
场景和之前大致是类似的,只不过引用Leader Epoch机制后,Follower副本B重启回来后,需要向A发送一个特殊的请求去获取Leader的LEO值。在这个例子中,该值为2。当获知到Leader LEO=2后,B发现该LEO值不比它自己的LEO值小,而且缓存中也没有保存任何起始位移值 > 2的Epoch条目,因此B无需执行任何日志截断操作。这是对高水位机制的一个明显改进,即副本是否执行日志截断不再依赖于高水位进行判断。
现在,副本A宕机了,B成为Leader。同样地,当A重启回来后,执行与B相同的逻辑判断,发现也不用执行日志截断,至此位移值为1的那条消息在两个副本中均得到保留。后面当生产者程序向B写入新消息时,副本B所在的Broker缓存中,会生成新的Leader Epoch条目:[Epoch=1, Offset=2]。之后,副本B会使用这个条目帮助判断后续是否执行日志截断操作。这样,通过Leader Epoch机制,Kafka完美地规避了这种数据丢失场景。
今天,我向你详细地介绍了Kafka的高水位机制以及Leader Epoch机制。高水位在界定Kafka消息对外可见性以及实现副本机制等方面起到了非常重要的作用,但其设计上的缺陷给Kafka留下了很多数据丢失或数据不一致的潜在风险。为此,社区引入了Leader Epoch机制,尝试规避掉这类风险。事实证明,它的效果不错,在0.11版本之后,关于副本数据不一致性方面的Bug的确减少了很多。如果你想深入学习Kafka的内部原理,今天的这些内容是非常值得你好好琢磨并熟练掌握的。
在讲述高水位时,我是拿2个副本举的例子。不过,你应该很容易地扩展到多个副本。现在,请你尝试用3个副本来说明一下副本同步全流程,以及分区高水位被更新的过程。
欢迎写下你的思考和答案,我们一起讨论。如果你觉得有所收获,也欢迎把文章分享给你的朋友。