你好,我是倪朋飞。

前几节我们一起学习了 CPU 的性能原理和优化方法,接下来,我们将进入另一个板块——内存。

同 CPU 管理一样,内存管理也是操作系统最核心的功能之一。内存主要用来存储系统和应用程序的指令、数据、缓存等。

那么,Linux 到底是怎么管理内存的呢?今天,我就来带你一起来看看这个问题。

内存映射

说到内存,你能说出你现在用的这台计算机内存有多大吗?我估计你记得很清楚,因为这是我们购买时,首先考虑的一个重要参数,比方说,我的笔记本电脑内存就是 8GB 的 。

我们通常所说的内存容量,就像我刚刚提到的8GB,其实指的是物理内存。物理内存也称为主存,大多数计算机用的主存都是动态随机访问内存(DRAM)。只有内核才可以直接访问物理内存。那么,进程要访问内存时,该怎么办呢?

Linux 内核给每个进程都提供了一个独立的虚拟地址空间,并且这个地址空间是连续的。这样,进程就可以很方便地访问内存,更确切地说是访问虚拟内存。

虚拟地址空间的内部又被分为内核空间和用户空间两部分,不同字长(也就是单个CPU指令可以处理数据的最大长度)的处理器,地址空间的范围也不同。比如最常见的 32 位和 64 位系统,我画了两张图来分别表示它们的虚拟地址空间,如下所示:

通过这里可以看出,32位系统的内核空间占用 1G,位于最高处,剩下的3G是用户空间。而 64 位系统的内核空间和用户空间都是 128T,分别占据整个内存空间的最高和最低处,剩下的中间部分是未定义的。

还记得进程的用户态和内核态吗?进程在用户态时,只能访问用户空间内存;只有进入内核态后,才可以访问内核空间内存。虽然每个进程的地址空间都包含了内核空间,但这些内核空间,其实关联的都是相同的物理内存。这样,进程切换到内核态后,就可以很方便地访问内核空间内存。

既然每个进程都有一个这么大的地址空间,那么所有进程的虚拟内存加起来,自然要比实际的物理内存大得多。所以,并不是所有的虚拟内存都会分配物理内存,只有那些实际使用的虚拟内存才分配物理内存,并且分配后的物理内存,是通过内存映射来管理的。

内存映射,其实就是将虚拟内存地址映射到物理内存地址。为了完成内存映射,内核为每个进程都维护了一张页表,记录虚拟地址与物理地址的映射关系,如下图所示:

页表实际上存储在 CPU 的内存管理单元 MMU中,这样,正常情况下,处理器就可以直接通过硬件,找出要访问的内存。

而当进程访问的虚拟地址在页表中查不到时,系统会产生一个缺页异常,进入内核空间分配物理内存、更新进程页表,最后再返回用户空间,恢复进程的运行。

另外,我在 CPU 上下文切换的文章中曾经提到, TLB(Translation Lookaside Buffer,转译后备缓冲器)会影响 CPU 的内存访问性能,在这里其实就可以得到解释。

TLB 其实就是 MMU 中页表的高速缓存。由于进程的虚拟地址空间是独立的,而 TLB 的访问速度又比 MMU 快得多,所以,通过减少进程的上下文切换,减少TLB的刷新次数,就可以提高TLB 缓存的使用率,进而提高CPU的内存访问性能。

不过要注意,MMU 并不以字节为单位来管理内存,而是规定了一个内存映射的最小单位,也就是页,通常是 4 KB大小。这样,每一次内存映射,都需要关联 4 KB 或者 4KB 整数倍的内存空间。

页的大小只有4 KB ,导致的另一个问题就是,整个页表会变得非常大。比方说,仅 32 位系统就需要 100 多万个页表项(4GB/4KB),才可以实现整个地址空间的映射。为了解决页表项过多的问题,Linux 提供了两种机制,也就是多级页表和大页(HugePage)。

多级页表就是把内存分成区块来管理,将原来的映射关系改成区块索引和区块内的偏移。由于虚拟内存空间通常只用了很少一部分,那么,多级页表就只保存这些使用中的区块,这样就可以大大地减少页表的项数。

Linux 用的正是四级页表来管理内存页,如下图所示,虚拟地址被分为5个部分,前4个表项用于选择页,而最后一个索引表示页内偏移。

再看大页,顾名思义,就是比普通页更大的内存块,常见的大小有 2MB 和 1GB。大页通常用在使用大量内存的进程上,比如 Oracle、DPDK 等。

通过这些机制,在页表的映射下,进程就可以通过虚拟地址来访问物理内存了。那么具体到一个 Linux 进程中,这些内存又是怎么使用的呢?

虚拟内存空间分布

首先,我们需要进一步了解虚拟内存空间的分布情况。最上方的内核空间不用多讲,下方的用户空间内存,其实又被分成了多个不同的段。以 32 位系统为例,我画了一张图来表示它们的关系。

通过这张图你可以看到,用户空间内存,从低到高分别是五种不同的内存段。

  1. 只读段,包括代码和常量等。

  2. 数据段,包括全局变量等。

  3. 堆,包括动态分配的内存,从低地址开始向上增长。

  4. 文件映射段,包括动态库、共享内存等,从高地址开始向下增长。

  5. 栈,包括局部变量和函数调用的上下文等。栈的大小是固定的,一般是 8 MB。

在这五个内存段中,堆和文件映射段的内存是动态分配的。比如说,使用 C 标准库的 malloc() 或者 mmap() ,就可以分别在堆和文件映射段动态分配内存。

其实64位系统的内存分布也类似,只不过内存空间要大得多。那么,更重要的问题来了,内存究竟是怎么分配的呢?

内存分配与回收

malloc() 是 C 标准库提供的内存分配函数,对应到系统调用上,有两种实现方式,即 brk() 和 mmap()。

对小块内存(小于128K),C 标准库使用 brk() 来分配,也就是通过移动堆顶的位置来分配内存。这些内存释放后并不会立刻归还系统,而是被缓存起来,这样就可以重复使用。

而大块内存(大于 128K),则直接使用内存映射 mmap() 来分配,也就是在文件映射段找一块空闲内存分配出去。

这两种方式,自然各有优缺点。

brk() 方式的缓存,可以减少缺页异常的发生,提高内存访问效率。不过,由于这些内存没有归还系统,在内存工作繁忙时,频繁的内存分配和释放会造成内存碎片。

而 mmap() 方式分配的内存,会在释放时直接归还系统,所以每次 mmap 都会发生缺页异常。在内存工作繁忙时,频繁的内存分配会导致大量的缺页异常,使内核的管理负担增大。这也是malloc 只对大块内存使用 mmap 的原因。

了解这两种调用方式后,我们还需要清楚一点,那就是,当这两种调用发生后,其实并没有真正分配内存。这些内存,都只在首次访问时才分配,也就是通过缺页异常进入内核中,再由内核来分配内存。

整体来说,Linux 使用伙伴系统来管理内存分配。前面我们提到过,这些内存在MMU中以页为单位进行管理,伙伴系统也一样,以页为单位来管理内存,并且会通过相邻页的合并,减少内存碎片化(比如brk方式造成的内存碎片)。

你可能会想到一个问题,如果遇到比页更小的对象,比如不到1K的时候,该怎么分配内存呢?

实际系统运行中,确实有大量比页还小的对象,如果为它们也分配单独的页,那就太浪费内存了。

所以,在用户空间,malloc 通过 brk() 分配的内存,在释放时并不立即归还系统,而是缓存起来重复利用。在内核空间,Linux 则通过 slab 分配器来管理小内存。你可以把slab 看成构建在伙伴系统上的一个缓存,主要作用就是分配并释放内核中的小对象。

对内存来说,如果只分配而不释放,就会造成内存泄漏,甚至会耗尽系统内存。所以,在应用程序用完内存后,还需要调用 free() 或 unmap() ,来释放这些不用的内存。

当然,系统也不会任由某个进程用完所有内存。在发现内存紧张时,系统就会通过一系列机制来回收内存,比如下面这三种方式:

其中,第二种方式回收不常访问的内存时,会用到交换分区(以下简称 Swap)。Swap 其实就是把一块磁盘空间当成内存来用。它可以把进程暂时不用的数据存储到磁盘中(这个过程称为换出),当进程访问这些内存时,再从磁盘读取这些数据到内存中(这个过程称为换入)。

所以,你可以发现,Swap 把系统的可用内存变大了。不过要注意,通常只在内存不足时,才会发生 Swap 交换。并且由于磁盘读写的速度远比内存慢,Swap 会导致严重的内存性能问题。

第三种方式提到的 OOM(Out of Memory),其实是内核的一种保护机制。它监控进程的内存使用情况,并且使用 oom_score 为每个进程的内存使用情况进行评分:

这样,进程的 oom_score 越大,代表消耗的内存越多,也就越容易被 OOM 杀死,从而可以更好保护系统。

当然,为了实际工作的需要,管理员可以通过 /proc 文件系统,手动设置进程的 oom_adj ,从而调整进程的 oom_score。

oom_adj 的范围是 [-17, 15],数值越大,表示进程越容易被 OOM 杀死;数值越小,表示进程越不容易被 OOM 杀死,其中 -17 表示禁止 OOM。

比如用下面的命令,你就可以把 sshd 进程的 oom_adj 调小为 -16,这样, sshd 进程就不容易被 OOM 杀死。

echo -16 > /proc/$(pidof sshd)/oom_adj

如何查看内存使用情况

通过了解内存空间的分布,以及内存的分配和回收,我想你对内存的工作原理应该有了大概的认识。当然,系统的实际工作原理更加复杂,也会涉及其他一些机制,这里我只讲了最主要的原理。掌握了这些,你可以对内存的运作有一条主线认识,不至于脑海里只有术语名词的堆砌。

那么在了解内存的工作原理之后,我们又该怎么查看系统内存使用情况呢?

其实前面CPU内容的学习中,我们也提到过一些相关工具。在这里,你第一个想到的应该是 free 工具吧。下面是一个 free 的输出示例:

# 注意不同版本的free输出可能会有所不同
$ free
              total        used        free      shared  buff/cache   available
Mem:        8169348      263524     6875352         668     1030472     7611064
Swap:             0           0           0

你可以看到,free 输出的是一个表格,其中的数值都默认以字节为单位。表格总共有两行六列,这两行分别是物理内存 Mem 和交换分区 Swap 的使用情况,而六列中,每列数据的含义分别为:

这里尤其注意一下,最后一列的可用内存available 。available不仅包含未使用内存,还包括了可回收的缓存,所以一般会比未使用内存更大。不过,并不是所有缓存都可以回收,因为有些缓存可能正在使用中。

不过,我们知道,free 显示的是整个系统的内存使用情况。如果你想查看进程的内存使用情况,可以用 top 或者 ps 等工具。比如,下面是 top 的输出示例:

# 按下M切换到内存排序
$ top
...
KiB Mem :  8169348 total,  6871440 free,   267096 used,  1030812 buff/cache
KiB Swap:        0 total,        0 free,        0 used.  7607492 avail Mem


  PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND
  430 root      19  -1  122360  35588  23748 S   0.0  0.4   0:32.17 systemd-journal
 1075 root      20   0  771860  22744  11368 S   0.0  0.3   0:38.89 snapd
 1048 root      20   0  170904  17292   9488 S   0.0  0.2   0:00.24 networkd-dispat
    1 root      20   0   78020   9156   6644 S   0.0  0.1   0:22.92 systemd
12376 azure     20   0   76632   7456   6420 S   0.0  0.1   0:00.01 systemd
12374 root      20   0  107984   7312   6304 S   0.0  0.1   0:00.00 sshd
...

top 输出界面的顶端,也显示了系统整体的内存使用情况,这些数据跟 free 类似,我就不再重复解释。我们接着看下面的内容,跟内存相关的几列数据,比如 VIRT、RES、SHR 以及 %MEM 等。

这些数据,包含了进程最重要的几个内存使用情况,我们挨个来看。

除了要认识这些基本信息,在查看 top 输出时,你还要注意两点。

第一,虚拟内存通常并不会全部分配物理内存。从上面的输出,你可以发现每个进程的虚拟内存都比常驻内存大得多。

第二,共享内存 SHR 并不一定是共享的,比方说,程序的代码段、非共享的动态链接库,也都算在 SHR 里。当然,SHR 也包括了进程间真正共享的内存。所以在计算多个进程的内存使用时,不要把所有进程的 SHR 直接相加得出结果。

小结

今天,我们梳理了 Linux 内存的工作原理。对普通进程来说,它能看到的其实是内核提供的虚拟内存,这些虚拟内存还需要通过页表,由系统映射为物理内存。

当进程通过 malloc() 申请内存后,内存并不会立即分配,而是在首次访问时,才通过缺页异常陷入内核中分配内存。

由于进程的虚拟地址空间比物理内存大很多,Linux 还提供了一系列的机制,应对内存不足的问题,比如缓存的回收、交换分区 Swap 以及 OOM 等。

当你需要了解系统或者进程的内存使用情况时,可以用 free 和 top 、ps 等性能工具。它们都是分析性能问题时最常用的性能工具,希望你能熟练使用它们,并真正理解各个指标的含义。

思考

最后,我想请你来聊聊你所理解的Linux内存。你碰到过哪些内存相关的性能瓶颈?你又是怎么样来分析它们的呢?你可以结合今天学到的内存知识和工作原理,提出自己的观点。

欢迎在留言区和我讨论,也欢迎你把这篇文章分享给你的同事、朋友。我们一起在实战中演练,在交流中进步。

评论