你好,我是景霄。

转眼间,专栏上线已经一个月了,而我们也在不知不觉中完成了第一大章基础篇的学习。我非常高兴看到很多同学一直在坚持积极地学习,并且留下了很多高质量的留言,值得我们互相思考交流。也有一些同学反复推敲,指出了文章中一些表达不严谨或是不当的地方,我也表示十分感谢。

大部分留言,我都在相对应的文章中回复过了。而一些手机上不方便回复,或是很有价值很典型的问题,我专门摘录了出来,作为今天的答疑内容,集中回复。

问题一:列表和元组的内部实现

第一个问题,是胡峣同学提出的,有关列表(list)和元组(tuple)的内部实现,想知道里边是linked list 或array,还是把array linked一下这样的方式?

关于这个问题,我们可以分别从源码来看。

先来看 Python 3.7 的list源码。你可以先自己阅读下面两个链接里的内容。

listobject.h:https://github.com/python/cpython/blob/949fe976d5c62ae63ed505ecf729f815d0baccfc/Include/listobject.h#L23

listobject.c: https://github.com/python/cpython/blob/3d75bd15ac82575967db367c517d7e6e703a6de3/Objects/listobject.c#L33

我把 list的具体结构放在了下面:

可以看到,list本质上是一个over-allocate的array。其中,ob_item是一个指针列表,里面的每一个指针都指向列表的元素。而 allocated则存储了这个列表已经被分配的空间大小。

需要注意的是,allocated 与列表实际空间大小的区别。列表实际空间大小,是指len(list)返回的结果,即上述代码注释中的ob_size,表示这个列表总共存储了多少个元素。实际情况下,为了优化存储结构,避免每次增加元素都要重新分配内存,列表预分配的空间allocated往往会大于ob_size(详见正文中的例子)。

所以,它们的关系为:allocated >= len(list) = ob_size

如果当前列表分配的空间已满(即allocated == len(list)),则会向系统请求更大的内存空间,并把原来的元素全部拷贝过去。列表每次分配空间的大小,遵循下面的模式:

0, 4, 8, 16, 25, 35, 46, 58, 72, 88, ...

我们再来分析元组。下面是Python 3.7 的tuple源码,同样的,你可以先自己阅读一下。

tupleobject.h: https://github.com/python/cpython/blob/3d75bd15ac82575967db367c517d7e6e703a6de3/Include/tupleobject.h#L25

tupleobject.c:https://github.com/python/cpython/blob/3d75bd15ac82575967db367c517d7e6e703a6de3/Objects/tupleobject.c#L16

同样的,下面为tuple的具体结构:

你可以看到,它和list相似,本质也是一个array,但是空间大小固定。不同于一般array,Python的tuple做了许多优化,来提升在程序中的效率。

举个例子,当tuple的大小不超过20时,Python就会把它缓存在内部的一个free list中。这样,如果你以后需要再去创建同样的tuple,Python就可以直接从缓存中载入,提高了程序运行效率。

问题二:为什么在旧哈希表中,元素会越来越稀疏?

第二个问题,是Hoo同学提出的,为什么在旧哈希表中,元素会越来越稀疏?

我们可以先来看旧哈希表的示意图:

--+-------------------------------+
  | 哈希值 (hash)  键 (key)  值 (value)
--+-------------------------------+
0 |    hash0      key0    value0
--+-------------------------------+
1 |    hash1      key1    value1
--+-------------------------------+
2 |    hash2      key2    value2
--+-------------------------------+
. |           ...
__+_______________________________+

你会发现,它是一个over-allocate的array,根据元素键(key)的哈希值,来计算其应该被插入位置的索引。

因此,假设我有下面这样一个字典:

{'name': 'mike', 'dob': '1999-01-01', 'gender': 'male'}

那么这个字典便会存储为类似下面的形式:

entries = [
['--', '--', '--']
[-230273521, 'dob', '1999-01-01'],
['--', '--', '--'],
['--', '--', '--'],
[1231236123, 'name', 'mike'],
['--', '--', '--'],
[9371539127, 'gender', 'male']
]

这里的’---‘,表示这个位置没有元素,但是已经分配了内存。

我们知道,当哈希表剩余空间小于1/3时,为了保证相关操作的高效性并避免哈希冲突,就会重新分配更大的内存。所以,当哈希表中的元素越来越多时,分配了内存但里面没有元素的位置,也会变得越来越多。这样一来,哈希表便会越来越稀疏。

而新哈希表的结构,改变了这一点,也大大提高了空间的利用率。新哈希表的结构如下所示:

Indices
----------------------------------------------------
None | index | None | None | index | None | index ...
----------------------------------------------------


Entries
--------------------
hash0   key0  value0
---------------------
hash1   key1  value1
---------------------
hash2   key2  value2
---------------------
        ...
---------------------

你可以看到,它把存储结构分成了Indices和Entries这两个array,而’None‘代表这个位置分配了内存但没有元素。

我们同样还用上面这个例子,它在新哈希表中的存储模式,就会变为下面这样:

indices = [None, 1, None, None, 0, None, 2]
entries = [
[1231236123, 'name', 'mike'],
[-230273521, 'dob', '1999-01-01'],
[9371539127, 'gender', 'male']
]

其中,Indices中元素的值,对应entries中相应的索引。比如indices中的1,就对应着entries[1],即’'dob': '1999-01-01'‘

对比之下,我们会清晰感受到,新哈希表中的空间利用率,相比于旧哈希表有大大的提升。

问题三:有关异常的困扰

第三个问题,是“不瘦到140不改名”同学提出的,对“NameError”异常的困惑。这是很常见的一个错误,我在这里也解释一下。

这个问题其实有点tricky,如果你查阅官方文档,会看到这么一句话”When an exception has been assigned using as target, it is cleared at the end of the except clause. ”

这句话意思是,如果你在异常处理的except block中,把异常赋予了一个变量,那么这个变量会在except block执行结束时被删除,相当于下面这样的表示:

e = 1
try:
    1 / 0
except ZeroDivisionError as e:
    try:
        pass
    finally:
        del e

这里的e一开始指向整数1,但是在except block结束时被删除了(del e),所以程序执行就会抛出“NameError”的异常。

因此,这里提醒我们,在平时写代码时,一定要保证except中异常赋予的变量,在之后的语句中不再被用到。

问题四:关于多态和全局变量的修改

最后的问题来自于farFlight同学,他提了两个问题:

  1. Python自己判断类型的多态和子类继承的多态Polymorphism是否相同?
  2. 函数内部不能直接用+=等修改全局变量,但是对于list全局变量,却可以使用append、extend之类修改,这是为什么呢?

我们分别来看这两个问题。对于第一个问题,要搞清楚多态的概念,多态是指有多种不同的形式。因此,判断类型的多态和子类继承的多态,在本质上都是一样的,只不过你可以把它们理解为多态的两种不同表现。

再来看第二个问题。当全局变量指向的对象不可变时,比如是整型、字符串等等,如果你尝试在函数内部改变它的值,却不加关键字global,就会抛出异常:

x = 1

def func():
    x += 1
func()
x

## 输出
UnboundLocalError: local variable 'x' referenced before assignment

这是因为,程序默认函数内部的x是局部变量,而你没有为其赋值就直接引用,显然是不可行。

不过,如果全局变量指向的对象是可变的,比如是列表、字典等等,你就可以在函数内部修改它了:

x = [1]

def func():
    x.append(2)
func()
x

## 输出
[1, 2]

当然,需要注意的是,这里的x.append(2),并没有改变变量x,x依然指向原来的列表。事实上,这句话的意思是,访问x指向的列表,并在这个列表的末尾增加2。

今天主要回答这些问题,同时也欢迎你继续在留言区写下疑问和感想,我会持续不断地解答。希望每一次的留言和答疑,都能给你带来新的收获和价值。

评论