大家好,我是景霄。
上节课,我们介绍了交易所的数据抓取,特别是orderbook和tick数据的抓取。今天这节课,我们考虑的是,怎么在这些历史数据上测试一个交易策略。
首先我们要明确,对于很多策略来说,我们上节课抓取的密集的orderbook和tick数据,并不能简单地直接使用。因为数据量太密集,包含了太多细节;而且长时间连接时,网络随机出现的不稳定,会导致丢失部分tick数据。因此,我们还需要进行合适的清洗、聚合等操作。
此外,为了进行回测,我们需要一个交易策略,还需要一个测试框架。目前已存在很多成熟的回测框架,但是为了Python学习,我决定带你搭建一个简单的回测框架,并且从中简单一窥Pandas的优势。
了解过一些股票交易的同学,可能知道K线这种东西。K线又称“蜡烛线”,是一种反映价格走势的图线。它的特色在于,一个线段内记录了多项讯息,相当易读易懂且实用有效,因此被广泛用于股票、期货、贵金属、数字货币等行情的技术分析。下面便是一个K线示意图。
其中,每一个小蜡烛,都代表着当天的开盘价(Open)、最高价(High)、最低价(Low)和收盘价(Close),也就是我画的第二张图表示的这样。
类似的,除了日K线之外,还有周K线、小时K线、分钟K线等等。那么这个K线是怎么计算来的呢?
我们以小时K线图为例,还记得我们当时抓取的tick数据吗?也就是每一笔交易的价格和数量。那么,如果从上午10:00开始,我们开始积累tick的交易数据,以10:00开始的第一个交易作为Open数据,11:00前的最后一笔交易作为Close值,并把这一个小时最低和最高的成交价格分别作为High和Low的值,我们就可以绘制出这一个小时对应的“小蜡烛”形状了。
如果再加上这一个小时总的成交量(Volumn),就得到了OHLCV数据。
所以,如果我们一直抓取着tick底层原始数据,我们就能在上层聚合出1分钟K线、小时K线以及日、周k线等等。如果你对这一部分操作有兴趣,可以把此作为今天的课后作业来实践。
接下来,我们将使用Gemini从2015年到2019年7月这个时间内,BTC对USD每个小时的OHLCV数据,作为策略和回测的输入。你可以在这里下载数据。
数据下载完成后,我们可以利用Pandas读取,比如下面这段代码。
def assert_msg(condition, msg):
if not condition:
raise Exception(msg)
def read_file(filename):
# 获得文件绝对路径
filepath = path.join(path.dirname(__file__), filename)
# 判定文件是否存在
assert_msg(path.exists(filepath), "文件不存在")
# 读取CSV文件并返回
return pd.read_csv(filepath,
index_col=0,
parse_dates=True,
infer_datetime_format=True)
BTCUSD = read_file('BTCUSD_GEMINI.csv')
assert_msg(BTCUSD.__len__() > 0, '读取失败')
print(BTCUSD.head())
########## 输出 ##########
Time Symbol Open High Low Close Volume
Date
2019-07-08 00:00:00 BTCUSD 11475.07 11540.33 11469.53 11506.43 10.770731
2019-07-07 23:00:00 BTCUSD 11423.00 11482.72 11423.00 11475.07 32.996559
2019-07-07 22:00:00 BTCUSD 11526.25 11572.74 11333.59 11423.00 48.937730
2019-07-07 21:00:00 BTCUSD 11515.80 11562.65 11478.20 11526.25 25.323908
2019-07-07 20:00:00 BTCUSD 11547.98 11624.88 11423.94 11515.80 63.211972
这段代码提供了两个工具函数。
说完了数据,我们接着来看回测数据。常见的回测框架有两类。一类是向量化回测框架,它通常基于Pandas+Numpy来自己搭建计算核心;后端则是用MySQL或者MongoDB作为源。这种框架通过Pandas+Numpy对OHLC数组进行向量运算,可以在较长的历史数据上进行回测。不过,因为这类框架一般只用OHLC,所以模拟会比较粗糙。
另一类则是事件驱动型回测框架。这类框架,本质上是针对每一个tick的变动或者orderbook的变动生成事件;然后,再把一个个事件交给策略进行执行。因此,虽然它的拓展性很强,可以允许更加灵活的策略,但回测速度是很慢的。
我们想要学习量化交易,使用大型成熟的回测框架,自然是第一选择。
显然,对于我们Python学习者来说,第一类也就是向量型回测框架,才是最适合我们练手的项目了。那么,我们就开始吧。
首先,我先为你梳理下回测流程,也就是下面五步:
对此,使用之前学到的面向对象思维方式,我们可以大致抽取三个类:
接下来,我们先从最外层的大框架开始。这样的好处在于,我们是从上到下、从外往内地思考,虽然还没有开始设计依赖项(Backtest的依赖项是ExchangeAPI和Strategy),但我们可以推测出它们应有的接口形式。推测接口的本质,其实就是推测程序的输入。
这也是我在一开始提到过的,对于程序这个“黑箱”,你在一开始设计的时候,就要想好输入和输出。
回到最外层Backtest类。我们需要知道,输出是最后的收益,那么显然,输入应该是初始输入的资金数量(cash)。
此外,为了模拟得更加真实,我们还要考虑交易所的手续费(commission)。手续费的多少取决于券商(broker)或者交易所,比如我们买卖股票的券商手续费可能是万七,那么就是0.0007。但是在比特币交易领域,手续费通常会稍微高一点,可能是千分之二左右。当然,无论怎么多,一般也不会超过5 %。否则我们大家交易几次就破产了,也就不会有人去交易了。
这里说一句题外话,不知道你有没有发现,无论数字货币的价格是涨还是跌,总有一方永远不亏,那就是交易所。因为只要有人交易,他们就有白花花的银子进账。
回到正题,至此,我们就确定了Backtest的输入和输出。
它的输入是:
输出则是:
对此,你可以参考下面这段代码:
class Backtest:
"""
Backtest回测类,用于读取历史行情数据、执行策略、模拟交易并估计
收益。
初始化的时候调用Backtest.run来时回测
instance, or `backtesting.backtesting.Backtest.optimize` to
optimize it.
"""
def __init__(self,
data: pd.DataFrame,
strategy_type: type(Strategy),
broker_type: type(ExchangeAPI),
cash: float = 10000,
commission: float = .0):
"""
构造回测对象。需要的参数包括:历史数据,策略对象,初始资金数量,手续费率等。
初始化过程包括检测输入类型,填充数据空值等。
参数:
:param data: pd.DataFrame pandas Dataframe格式的历史OHLCV数据
:param broker_type: type(ExchangeAPI) 交易所API类型,负责执行买卖操作以及账户状态的维护
:param strategy_type: type(Strategy) 策略类型
:param cash: float 初始资金数量
:param commission: float 每次交易手续费率。如2%的手续费此处为0.02
"""
assert_msg(issubclass(strategy_type, Strategy), 'strategy_type不是一个Strategy类型')
assert_msg(issubclass(broker_type, ExchangeAPI), 'strategy_type不是一个Strategy类型')
assert_msg(isinstance(commission, Number), 'commission不是浮点数值类型')
data = data.copy(False)
# 如果没有Volumn列,填充NaN
if 'Volume' not in data:
data['Volume'] = np.nan
# 验证OHLC数据格式
assert_msg(len(data.columns & {'Open', 'High', 'Low', 'Close', 'Volume'}) == 5,
("输入的`data`格式不正确,至少需要包含这些列:"
"'Open', 'High', 'Low', 'Close'"))
# 检查缺失值
assert_msg(not data[['Open', 'High', 'Low', 'Close']].max().isnull().any(),
('部分OHLC包含缺失值,请去掉那些行或者通过差值填充. '))
# 如果行情数据没有按照时间排序,重新排序一下
if not data.index.is_monotonic_increasing:
data = data.sort_index()
# 利用数据,初始化交易所对象和策略对象。
self._data = data # type: pd.DataFrame
self._broker = broker_type(data, cash, commission)
self._strategy = strategy_type(self._broker, self._data)
self._results = None
def run(self):
"""
运行回测,迭代历史数据,执行模拟交易并返回回测结果。
Run the backtest. Returns `pd.Series` with results and statistics.
Keyword arguments are interpreted as strategy parameters.
"""
strategy = self._strategy
broker = self._broker
# 策略初始化
strategy.init()
# 设定回测开始和结束位置
start = 100
end = len(self._data)
# 回测主循环,更新市场状态,然后执行策略
for i in range(start, end):
# 注意要先把市场状态移动到第i时刻,然后再执行策略。
broker.next(i)
strategy.next(i)
# 完成策略执行之后,计算结果并返回
self._results = self._compute_result(broker)
return self._results
def _compute_result(self, broker):
s = pd.Series()
s['初始市值'] = broker.initial_cash
s['结束市值'] = broker.market_value
s['收益'] = broker.market_value - broker.initial_cash
return s
这段代码有点长,但是核心其实就两部分。
你应该注意到了,此时,我们还没有定义策略和交易所API的结构。不过,通过回测的执行函数,我们可以确定这两个类的接口形式。
策略类(Strategy)的接口形式为:
交易所类(ExchangeAPI)的接口形式为:
接下来我们来看交易策略。交易策略的开发是一个非常复杂的学问。为了达到学习的目的,我们来想一个简单的策略——移动均值交叉策略。
为了了解这个策略,我们先了解一下,什么叫做简单移动均值(Simple Moving Average,简称为SMA,以下皆用SMA表示简单移动均值)。我们知道,N个数的序列 x[0]、x[1] .…… x[N] 的均值,就是这N个数的和除以N。
现在,我假设一个比较小的数K,比N小很多。我们用一个K大小的滑动窗口,在原始的数组上滑动。通过对每次框住的K个元素求均值,我们就可以得到,原始数组的窗口大小为K的SMA了。
SMA,实质上就是对原始数组进行了一个简单平滑处理。比如,某支股票的价格波动很大,那么,我们用SMA平滑之后,就会得到下面这张图的效果。
你可以看出,如果窗口大小越大,那么SMA应该越平滑,变化越慢;反之,如果SMA比较小,那么短期的变化也会越快地反映在SMA上。
于是,我们想到,能不能对投资品的价格设置两个指标呢?这俩指标,一个是小窗口的SMA,一个是大窗口的SMA。
下面这幅图,就展示了这两种情况。
明白了这里的概念和原理后,接下来的操作就不难了。利用Pandas,我们可以非常简单地计算SMA和SMA交叉。比如,你可以引入下面两个工具函数:
def SMA(values, n):
"""
返回简单滑动平均
"""
return pd.Series(values).rolling(n).mean()
def crossover(series1, series2) -> bool:
"""
检查两个序列是否在结尾交叉
:param series1: 序列1
:param series2: 序列2
:return: 如果交叉返回True,反之False
"""
return series1[-2] < series2[-2] and series1[-1] > series2[-1]
如代码所示,对于输入的一个数组,Pandas的rolling(k)函数,可以方便地计算窗内口大小为K的SMA数组;而想要检查某个时刻两个SMA是否交叉,你只需要查看两个数组末尾的两个元素即可。
那么,基于此,我们就可以开发出一个简单的策略了。下面这段代码表示策略的核心思想,我做了详细的注释,你理解起来应该没有问题:
def next(self, tick):
# 如果此时快线刚好越过慢线,买入全部
if crossover(self.sma1[:tick], self.sma2[:tick]):
self.buy()
# 如果是慢线刚好越过快线,卖出全部
elif crossover(self.sma2[:tick], self.sma1[:tick]):
self.sell()
# 否则,这个时刻不执行任何操作。
else:
pass
说完策略的核心思想,我们开始搭建策略类的框子。
首先,我们要考虑到,策略类Strategy应该是一个可以被继承的类,同时应该包含一些固定的接口。这样,回测器才能方便地调用。
于是,我们可以定义一个Strategy抽象类,包含两个接口方法init和next,分别对应我们前面说的指标计算和步进函数。不过注意,抽象类是不能被实例化的。所以,我们必须定义一个具体的子类,同时实现了init和next方法才可以。
这个类的定义,你可以参考下面代码的实现:
import abc
import numpy as np
from typing import Callable
class Strategy(metaclass=abc.ABCMeta):
"""
抽象策略类,用于定义交易策略。
如果要定义自己的策略类,需要继承这个基类,并实现两个抽象方法:
Strategy.init
Strategy.next
"""
def __init__(self, broker, data):
"""
构造策略对象。
@params broker: ExchangeAPI 交易API接口,用于模拟交易
@params data: list 行情数据数据
"""
self._indicators = []
self._broker = broker # type: _Broker
self._data = data # type: _Data
self._tick = 0
def I(self, func: Callable, *args) -> np.ndarray:
"""
计算买卖指标向量。买卖指标向量是一个数组,长度和历史数据对应;
用于判定这个时间点上需要进行"买"还是"卖"。
例如计算滑动平均:
def init():
self.sma = self.I(utils.SMA, self.data.Close, N)
"""
value = func(*args)
value = np.asarray(value)
assert_msg(value.shape[-1] == len(self._data.Close), '指示器长度必须和data长度相同')
self._indicators.append(value)
return value
@property
def tick(self):
return self._tick
@abc.abstractmethod
def init(self):
"""
初始化策略。在策略回测/执行过程中调用一次,用于初始化策略内部状态。
这里也可以预计算策略的辅助参数。比如根据历史行情数据:
计算买卖的指示器向量;
训练模型/初始化模型参数
"""
pass
@abc.abstractmethod
def next(self, tick):
"""
步进函数,执行第tick步的策略。tick代表当前的"时间"。比如data[tick]用于访问当前的市场价格。
"""
pass
def buy(self):
self._broker.buy()
def sell(self):
self._broker.sell()
@property
def data(self):
return self._data
为了方便访问成员,我们还定义了一些Python property。同时,我们的买卖请求是由策略类发出、由交易所API来执行的,所以我们的策略类里依赖于ExchangeAPI类。
现在,有了这个框架,我们实现移动均线交叉策略就很简单了。你只需要在init函数中,定义计算大小窗口SMA的逻辑;同时,在next函数中完成交叉检测和买卖调用就行了。具体实现,你可以参考下面这段代码:
from utils import assert_msg, crossover, SMA
class SmaCross(Strategy):
# 小窗口SMA的窗口大小,用于计算SMA快线
fast = 10
# 大窗口SMA的窗口大小,用于计算SMA慢线
slow = 20
def init(self):
# 计算历史上每个时刻的快线和慢线
self.sma1 = self.I(SMA, self.data.Close, self.fast)
self.sma2 = self.I(SMA, self.data.Close, self.slow)
def next(self, tick):
# 如果此时快线刚好越过慢线,买入全部
if crossover(self.sma1[:tick], self.sma2[:tick]):
self.buy()
# 如果是慢线刚好越过快线,卖出全部
elif crossover(self.sma2[:tick], self.sma1[:tick]):
self.sell()
# 否则,这个时刻不执行任何操作。
else:
pass
到这里,我们的回测就只差最后一块儿了。胜利就在眼前,我们继续加油。
我们前面提到过,交易所类负责模拟交易,而模拟的基础,就是需要当前市场的价格。这里,我们可以用OHLC中的Close,作为那个时刻的价格。
此外,为了简化设计,我们假设买卖操作都利用的是当前账户的所有资金、仓位,且市场容量足够大。这样,我们的下单请求就能够马上完全执行。
也别忘了手续费这个大头。考虑到有手续费的情况,此时,我们最核心的买卖函数应该怎么来写呢?
我们一起来想这个问题。假设,我们现在有1000.0元,此时BTC的价格是100.00元(当然没有这么好的事情啊,这里只是假设),并且交易手续费为1%。那么,我们能买到多少BTC呢?
我们可以采用这种算法:
买到的数量 = 投入的资金 * (1.0 - 手续费) / 价格
那么此时,你就能收到9.9个BTC。
类似的,卖出的时候结算方式如下,也不难理解:
卖出的收益 = 持有的数量 * 价格 * (1.0 - 手续费)
所以,最终模拟交易所类的实现,你可以参考下面这段代码:
from utils import read_file, assert_msg, crossover, SMA
class ExchangeAPI:
def __init__(self, data, cash, commission):
assert_msg(0 < cash, "初始现金数量大于0,输入的现金数量:{}".format(cash))
assert_msg(0 <= commission <= 0.05, "合理的手续费率一般不会超过5%,输入的费率:{}".format(commission))
self._inital_cash = cash
self._data = data
self._commission = commission
self._position = 0
self._cash = cash
self._i = 0
@property
def cash(self):
"""
:return: 返回当前账户现金数量
"""
return self._cash
@property
def position(self):
"""
:return: 返回当前账户仓位
"""
return self._position
@property
def initial_cash(self):
"""
:return: 返回初始现金数量
"""
return self._inital_cash
@property
def market_value(self):
"""
:return: 返回当前市值
"""
return self._cash + self._position * self.current_price
@property
def current_price(self):
"""
:return: 返回当前市场价格
"""
return self._data.Close[self._i]
def buy(self):
"""
用当前账户剩余资金,按照市场价格全部买入
"""
self._position = float(self._cash / (self.current_price * (1 + self._commission)))
self._cash = 0.0
def sell(self):
"""
卖出当前账户剩余持仓
"""
self._cash += float(self._position * self.current_price * (1 - self._commission))
self._position = 0.0
def next(self, tick):
self._i = tick
其中的current_price(当前价格),可以方便地获得模拟交易所当前时刻的商品价格;而market_value,则可以获得当前总市值。在初始化函数的时候,我们检查手续费率和输入的现金数量,是不是在一个合理的范围。
有了所有的这些部分,我们就可以来模拟回测啦!
首先,我们设置初始资金量为10000.00美元,交易所手续费率为0。这里你可以猜一下,如果我们从2015年到现在,都按照SMA来买卖,现在应该有多少钱呢?
def main():
BTCUSD = read_file('BTCUSD_GEMINI.csv')
ret = Backtest(BTCUSD, SmaCross, ExchangeAPI, 10000.0, 0.00).run()
print(ret)
if __name__ == '__main__':
main()
铛铛铛,答案揭晓,程序将输出:
初始市值 10000.000000
结束市值 576361.772884
收益 566361.772884
哇,结束时,我们将有57万美元,翻了整整57倍啊!简直不要太爽。不过,等等,这个手续费率为0,实在是有点碍眼,因为根本不可能啊。我们现在来设一个比较真实的值吧,大概千分之三,然后再来试试:
初始市值 10000.000000
结束市值 2036.562001
收益 -7963.437999
什么鬼?我们变成赔钱了,只剩下2000美元了!这是真的吗?
这是真的,也是假的。
我说的“真”是指,如果你真的用SMA交叉这种简单的方法去交易,那么手续费摩擦和滑点等因素,确实可能让你的高频策略赔钱。
而我说是“假”是指,这种模拟交易的方式非常粗糙。真实的市场情况,并非这么理想——比如买卖请求永远马上执行;再比如,我们在市场中进行交易的同时不会影响市场价格等,这些理想情况都是不可能的。所以,很多时候,回测永远赚钱,但实盘马上赔钱。
这节课,我们继承上一节,介绍了回测框架的分类、数据的格式,并且带你从头开始写了一个简单的回测系统。你可以把今天的代码片段“拼”起来,这样就会得到一个简化的回测系统样例。同时,我们实现了一个简单的交易策略,并且在真实的历史数据上运行了回测结果。我们观察到,在加入手续费后,策略的收益情况发生了显著的变化。
最后,给你留一个思考题。之前我们介绍了如何抓取tick数据,你可以根据抓取的tick数据,生成5分钟、每小时和每天的OHLCV数据吗?欢迎在留言区写下你的答案和问题,也欢迎你把这篇文章分享出去。