你好,我是蒋德钧。

上节课,我介绍了判断Redis变慢的两种方法,分别是响应延迟和基线性能。除此之外,我还给你分享了从Redis的自身命令操作层面排查和解决问题的两种方案。

但是,如果在排查时,你发现Redis没有执行大量的慢查询命令,也没有同时删除大量过期keys,那么,我们是不是就束手无策了呢?

当然不是!我还有很多“锦囊妙计”,准备在这节课分享给你呢!

如果上节课的方法不管用,那就说明,你要关注影响性能的其他机制了,也就是文件系统和操作系统。

Redis会持久化保存数据到磁盘,这个过程要依赖文件系统来完成,所以,文件系统将数据写回磁盘的机制,会直接影响到Redis持久化的效率。而且,在持久化的过程中,Redis也还在接收其他请求,持久化的效率高低又会影响到Redis处理请求的性能。

另一方面,Redis是内存数据库,内存操作非常频繁,所以,操作系统的内存机制会直接影响到Redis的处理效率。比如说,如果Redis的内存不够用了,操作系统会启动swap机制,这就会直接拖慢Redis。

那么,接下来,我再从这两个层面,继续给你介绍,如何进一步解决Redis变慢的问题。

文件系统:AOF模式

你可能会问,Redis是个内存数据库,为什么它的性能还和文件系统有关呢?

我在前面讲过,为了保证数据可靠性,Redis会采用AOF日志或RDB快照。其中,AOF日志提供了三种日志写回策略:no、everysec、always。这三种写回策略依赖文件系统的两个系统调用完成,也就是write和fsync。

write只要把日志记录写到内核缓冲区,就可以返回了,并不需要等待日志实际写回到磁盘;而fsync需要把日志记录写回到磁盘后才能返回,时间较长。下面这张表展示了三种写回策略所执行的系统调用。

当写回策略配置为everysec和always时,Redis需要调用fsync把日志写回磁盘。但是,这两种写回策略的具体执行情况还不太一样。

在使用everysec时,Redis允许丢失一秒的操作记录,所以,Redis主线程并不需要确保每个操作记录日志都写回磁盘。而且,fsync的执行时间很长,如果是在Redis主线程中执行fsync,就容易阻塞主线程。所以,当写回策略配置为everysec时,Redis会使用后台的子线程异步完成fsync的操作。

而对于always策略来说,Redis需要确保每个操作记录日志都写回磁盘,如果用后台子线程异步完成,主线程就无法及时地知道每个操作是否已经完成了,这就不符合always策略的要求了。所以,always策略并不使用后台子线程来执行。

另外,在使用AOF日志时,为了避免日志文件不断增大,Redis会执行AOF重写,生成体量缩小的新的AOF日志文件。AOF重写本身需要的时间很长,也容易阻塞Redis主线程,所以,Redis使用子进程来进行AOF重写。

但是,这里有一个潜在的风险点:AOF重写会对磁盘进行大量IO操作,同时,fsync又需要等到数据写到磁盘后才能返回,所以,当AOF重写的压力比较大时,就会导致fsync被阻塞。虽然fsync是由后台子线程负责执行的,但是,主线程会监控fsync的执行进度。

当主线程使用后台子线程执行了一次fsync,需要再次把新接收的操作记录写回磁盘时,如果主线程发现上一次的fsync还没有执行完,那么它就会阻塞。所以,如果后台子线程执行的fsync频繁阻塞的话(比如AOF重写占用了大量的磁盘IO带宽),主线程也会阻塞,导致Redis性能变慢。

为了帮助你理解,我再画一张图来展示下在磁盘压力小和压力大的时候,fsync后台子线程和主线程受到的影响。

好了,说到这里,你已经了解了,由于fsync后台子线程和AOF重写子进程的存在,主IO线程一般不会被阻塞。但是,如果在重写日志时,AOF重写子进程的写入量比较大,fsync线程也会被阻塞,进而阻塞主线程,导致延迟增加。现在,我来给出排查和解决建议。

首先,你可以检查下Redis配置文件中的appendfsync配置项,该配置项的取值表明了Redis实例使用的是哪种AOF日志写回策略,如下所示:

如果AOF写回策略使用了everysec或always配置,请先确认下业务方对数据可靠性的要求,明确是否需要每一秒或每一个操作都记日志。有的业务方不了解Redis AOF机制,很可能就直接使用数据可靠性最高等级的always配置了。其实,在有些场景中(例如Redis用于缓存),数据丢了还可以从后端数据库中获取,并不需要很高的数据可靠性。

如果业务应用对延迟非常敏感,但同时允许一定量的数据丢失,那么,可以把配置项no-appendfsync-on-rewrite设置为yes,如下所示:

no-appendfsync-on-rewrite yes

这个配置项设置为yes时,表示在AOF重写时,不进行fsync操作。也就是说,Redis实例把写命令写到内存后,不调用后台线程进行fsync操作,就可以直接返回了。当然,如果此时实例发生宕机,就会导致数据丢失。反之,如果这个配置项设置为no(也是默认配置),在AOF重写时,Redis实例仍然会调用后台线程进行fsync操作,这就会给实例带来阻塞。

如果的确需要高性能,同时也需要高可靠数据保证,我建议你考虑采用高速的固态硬盘作为AOF日志的写入设备。

高速固态盘的带宽和并发度比传统的机械硬盘的要高出10倍及以上。在AOF重写和fsync后台线程同时执行时,固态硬盘可以提供较为充足的磁盘IO资源,让AOF重写和fsync后台线程的磁盘IO资源竞争减少,从而降低对Redis的性能影响。

操作系统:swap

如果Redis的AOF日志配置只是no,或者就没有采用AOF模式,那么,还会有什么问题导致性能变慢吗?

接下来,我就再说一个潜在的瓶颈:操作系统的内存swap

内存swap是操作系统里将内存数据在内存和磁盘间来回换入和换出的机制,涉及到磁盘的读写,所以,一旦触发swap,无论是被换入数据的进程,还是被换出数据的进程,其性能都会受到慢速磁盘读写的影响。

Redis是内存数据库,内存使用量大,如果没有控制好内存的使用量,或者和其他内存需求大的应用一起运行了,就可能受到swap的影响,而导致性能变慢。

这一点对于Redis内存数据库而言,显得更为重要:正常情况下,Redis的操作是直接通过访问内存就能完成,一旦swap被触发了,Redis的请求操作需要等到磁盘数据读写完成才行。而且,和我刚才说的AOF日志文件读写使用fsync线程不同,swap触发后影响的是Redis主IO线程,这会极大地增加Redis的响应时间。

说到这儿,我想给你分享一个我曾经遇到过的因为swap而导致性能降低的例子。

在正常情况下,我们运行的一个实例完成5000万个GET请求时需要300s,但是,有一次,这个实例完成5000万GET请求,花了将近4个小时的时间。经过问题复现,我们发现,当时Redis处理请求用了近4小时的情况下,该实例所在的机器已经发生了swap。从300s到4个小时,延迟增加了将近48倍,可以看到swap对性能造成的严重影响。

那么,什么时候会触发swap呢?

通常,触发swap的原因主要是物理机器内存不足,对于Redis而言,有两种常见的情况:

针对这个问题,我也给你提供一个解决思路:增加机器的内存或者使用Redis集群

操作系统本身会在后台记录每个进程的swap使用情况,即有多少数据量发生了swap。你可以先通过下面的命令查看Redis的进程号,这里是5332。

$ redis-cli info | grep process_id
process_id: 5332

然后,进入Redis所在机器的/proc目录下的该进程目录中:

$ cd /proc/5332

最后,运行下面的命令,查看该Redis进程的使用情况。在这儿,我只截取了部分结果:

$cat smaps | egrep '^(Swap|Size)'
Size: 584 kB
Swap: 0 kB
Size: 4 kB
Swap: 4 kB
Size: 4 kB
Swap: 0 kB
Size: 462044 kB
Swap: 462008 kB
Size: 21392 kB
Swap: 0 kB

每一行Size表示的是Redis实例所用的一块内存大小,而Size下方的Swap和它相对应,表示这块Size大小的内存区域有多少已经被换出到磁盘上了。如果这两个值相等,就表示这块内存区域已经完全被换出到磁盘了。

作为内存数据库,Redis本身会使用很多大小不一的内存块,所以,你可以看到有很多Size行,有的很小,就是4KB,而有的很大,例如462044KB。不同内存块被换出到磁盘上的大小也不一样,例如刚刚的结果中的第一个4KB内存块,它下方的Swap也是4KB,这表示这个内存块已经被换出了;另外,462044KB这个内存块也被换出了462008KB,差不多有462MB。

这里有个重要的地方,我得提醒你一下,当出现百MB,甚至GB级别的swap大小时,就表明,此时,Redis实例的内存压力很大,很有可能会变慢。所以,swap的大小是排查Redis性能变慢是否由swap引起的重要指标。

一旦发生内存swap,最直接的解决方法就是增加机器内存。如果该实例在一个Redis切片集群中,可以增加Redis集群的实例个数,来分摊每个实例服务的数据量,进而减少每个实例所需的内存量。

当然,如果Redis实例和其他操作大量文件的程序(例如数据分析程序)共享机器,你可以将Redis实例迁移到单独的机器上运行,以满足它的内存需求量。如果该实例正好是Redis主从集群中的主库,而从库的内存很大,也可以考虑进行主从切换,把大内存的从库变成主库,由它来处理客户端请求。

操作系统:内存大页

除了内存swap,还有一个和内存相关的因素,即内存大页机制(Transparent Huge Page, THP),也会影响Redis性能。

Linux内核从2.6.38开始支持内存大页机制,该机制支持2MB大小的内存页分配,而常规的内存页分配是按4KB的粒度来执行的。

很多人都觉得:“Redis是内存数据库,内存大页不正好可以满足Redis的需求吗?而且在分配相同的内存量时,内存大页还能减少分配次数,不也是对Redis友好吗?”

其实,系统的设计通常是一个取舍过程,我们称之为trade-off。很多机制通常都是优势和劣势并存的。Redis使用内存大页就是一个典型的例子。

虽然内存大页可以给Redis带来内存分配方面的收益,但是,不要忘了,Redis为了提供数据可靠性保证,需要将数据做持久化保存。这个写入过程由额外的线程执行,所以,此时,Redis主线程仍然可以接收客户端写请求。客户端的写请求可能会修改正在进行持久化的数据。在这一过程中,Redis就会采用写时复制机制,也就是说,一旦有数据要被修改,Redis并不会直接修改内存中的数据,而是将这些数据拷贝一份,然后再进行修改。

如果采用了内存大页,那么,即使客户端请求只修改100B的数据,Redis也需要拷贝2MB的大页。相反,如果是常规内存页机制,只用拷贝4KB。两者相比,你可以看到,当客户端请求修改或新写入数据较多时,内存大页机制将导致大量的拷贝,这就会影响Redis正常的访存操作,最终导致性能变慢。

那该怎么办呢?很简单,关闭内存大页,就行了。

首先,我们要先排查下内存大页。方法是:在Redis实例运行的机器上执行如下命令:

cat /sys/kernel/mm/transparent_hugepage/enabled

如果执行结果是always,就表明内存大页机制被启动了;如果是never,就表示,内存大页机制被禁止。

在实际生产环境中部署时,我建议你不要使用内存大页机制,操作也很简单,只需要执行下面的命令就可以了:

echo never /sys/kernel/mm/transparent_hugepage/enabled

小结

这节课,我从文件系统和操作系统两个维度,给你介绍了应对Redis变慢的方法。

为了方便你应用,我给你梳理了一个包含9个检查点的Checklist,希望你在遇到Redis性能变慢时,按照这些步骤逐一检查,高效地解决问题。

  1. 获取Redis实例在当前环境下的基线性能。
  2. 是否用了慢查询命令?如果是的话,就使用其他命令替代慢查询命令,或者把聚合计算命令放在客户端做。
  3. 是否对过期key设置了相同的过期时间?对于批量删除的key,可以在每个key的过期时间上加一个随机数,避免同时删除。
  4. 是否存在bigkey? 对于bigkey的删除操作,如果你的Redis是4.0及以上的版本,可以直接利用异步线程机制减少主线程阻塞;如果是Redis 4.0以前的版本,可以使用SCAN命令迭代删除;对于bigkey的集合查询和聚合操作,可以使用SCAN命令在客户端完成。
  5. Redis AOF配置级别是什么?业务层面是否的确需要这一可靠性级别?如果我们需要高性能,同时也允许数据丢失,可以将配置项no-appendfsync-on-rewrite设置为yes,避免AOF重写和fsync竞争磁盘IO资源,导致Redis延迟增加。当然, 如果既需要高性能又需要高可靠性,最好使用高速固态盘作为AOF日志的写入盘。
  6. Redis实例的内存使用是否过大?发生swap了吗?如果是的话,就增加机器内存,或者是使用Redis集群,分摊单机Redis的键值对数量和内存压力。同时,要避免出现Redis和其他内存需求大的应用共享机器的情况。
  7. 在Redis实例的运行环境中,是否启用了透明大页机制?如果是的话,直接关闭内存大页机制就行了。
  8. 是否运行了Redis主从集群?如果是的话,把主库实例的数据量大小控制在2~4GB,以免主从复制时,从库因加载大的RDB文件而阻塞。
  9. 是否使用了多核CPU或NUMA架构的机器运行Redis实例?使用多核CPU时,可以给Redis实例绑定物理核;使用NUMA架构时,注意把Redis实例和网络中断处理程序运行在同一个CPU Socket上。

实际上,影响系统性能的因素还有很多,这两节课给你讲的都是应对最常见问题的解决方案。

如果你遇到了一些特殊情况,也不要慌,我再给你分享一个小技巧:仔细检查下有没有恼人的“邻居”,具体点说,就是Redis所在的机器上有没有一些其他占内存、磁盘IO和网络IO的程序,比如说数据库程序或者数据采集程序。如果有的话,我建议你将这些程序迁移到其他机器上运行。

为了保证Redis高性能,我们需要给Redis充足的计算、内存和IO资源,给它提供一个“安静”的环境。

每课一问

这两节课,我向你介绍了系统性定位、排查和解决Redis变慢的方法。所以,我想请你聊一聊,你遇到过Redis变慢的情况吗?如果有的话,你是怎么解决的呢?

欢迎你在留言区分享一下自己的经验,如果觉得今天的内容对你有所帮助,也欢迎分享给你的朋友或同事,我们下节课见。

评论